Simulink® Test™

User’s Guide

7

MATLAB&SIMULINK

zzzzzz ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Test™ User's Guide
© COPYRIGHT 2015-2020 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

Revision History

March 2015 Online only New for Version 1.0 (Release 2015a)
September 2015 Online only Revised for Version 1.1 (Release 2015b)
October 2015 Online only Rereleased for Version 1.0.1 (Release 2015aSP1)
March 2016 Online only Revised for Version 2.0 (Release 2016a)
September 2016 Online only Revised for Version 2.1 (Release 2016b)
March 2017 Online Only Revised for Version 2.2 (Release 2017a)
September 2017 Online Only Revised for Version 2.3 (Release 2017b)
March 2018 Online Only Revised for Version 2.4 (Release 2018a)
September 2018 Online Only Revised for Version 2.5 (Release 2018b)
March 2019 Online Only Revised for Version 3.0 (Release 2019a)
September 2019 Online Only Revised for Version 3.1 (Release 2019b)

March 2020 Online Only Revised for Version 3.2 (Release 2020a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Test Strategies

1]

2|

Link to Requirements 1-2
Requirements Traceability Considerations 1-2
Establish Requirements Traceability for Testing 1-3

Requirements-Based Testing for Model Development 1-7

Test Harness

Test Harness and Model Relationship 2-2
Harness-Model Relationship for a Model Component 2-3
Harness-Model Relationship for a Top-Level Model 2-4
Resolving Parameters i 2-5
Test Harness Considerations 2-5

Test Harness Construction for Specific Model Elements 2-8
Signal Conversiont e 2-8
Function Calls 2-8
Physical Signal Connectionst 2-9
BusSignals e 2-9
String Signals 2-9
Non-Graphical Connections 2-10
Export Function Models 2-10
Execution Semantics i 2-11
Sample Time Specification 2-11

Create Test Harnesses and Select Properties 2-12
Create a Test Harness Fora Top Level Model 2-12
Create a Test Harness for a Model Component 2-12
Preview and Open Test Harnesses, 2-13
Change Test Harness Properties i, 2-13
Considerations for Selecting Test Harness Properties 2-14
Harness Name i i e e 2-14
Save Test Harnesses Externally 2-14
Sourcesand Sinks 2-14
Createscalarinputs 2-15
Add scheduler for function-calls and rates / Generate function-call signals

USIIg o+ o vt et e e e e e e 2-15
Enable Initialize, Reset, and Terminate ports 2-15
Add Separate Assessment Block 2-15
Open Harness After Creation 2-15

iii

iv

Contents

Create without compiling the model

Verification Modest e
Use generated code to create SIL/PILblock

Buildfolder
Post-create callback method
Rebuild harnessonopen

Update Configuration Parameters and Model Workspace data on rebuild

Refine, Test, and Debug a Subsystem .
Model and Requirements
Create a Harness for the Controller .
Inspect and Refine the Controller . .

Add Test Inputs and Test the Controller

Debug the Controller

Manage Test Harnesses
Internal and External Test Harnesses
Manage External Test Harnesses . . .

Convert Between Internal and External Test Harnesses

Preview and Open Test Harnesses . .

Find Test Cases Associated with a Test Harness
Export Test Harnesses to Separate Models

Clone and Export a Test Harness to a
Delete Test Harnesses Programmatic
Move and Clone Test Harnesses . . .

Customize Test Harnesses

Separate Model
ally ...

Callback Function Definition and Harness Information

How to Display Harness Information

struct Contents

Customize a Test Harness to Create Mixed Source Types

Test Harness Callback Example

Create Test Harnesses from Standalon
Test Harness Import Workflow

eModels

Component Compatibility for Test Harness Import

Import a Standalone Model as a Test

Harness

Synchronize Changes Between Test Harness and Model
Set Synchronization for a New Test Harness
Change Synchronization of an Existing Test Harness
Synchronize Configuration Set and Model Workspace Data
Check for Unsynchronized Component Differences

Rebuild a Test Harness

Push Changes from Test HarnesstoModel

Check Component and Push Paramet

Test Library Blocks

ertoMainModel

Library Testing Workflow
Library and Linked Subsystem Test Harnesses
Edit Library Block from a Test Harnesso.....

Testing a Library and a Linked Block

Test Sequences and Assessments

3|

Test Sequence Basics 3-2
Test Sequence Hierarchy 3-2
Transition TYPesS . . oo vt 3-2
Create a Basic Test Sequence 3-3
Create Basic Test Assessments, 3-5

Use Stateflow Chart for Test Harness Inputs and Scheduling 3-8
Use a Stateflow Chart for Test Harness Scheduling 3-8
Use a Stateflow Chart as a Test Harness Source 3-9

.. 3-9

Assess Simulation and Compare OutputData 3-11
OVETVIBW . . ottt e e e e e e e e 3-11
Compare Simulation Data to Baseline Data or Another Simulation 3-11
Post-Process Results With a Custom Script 3-12
Run-Time ASSESSMENTSttt et e 3-12
Logical and Temporal Assessmentsoiiiiineer.n. 3-14

Assess Model Simulation Using verify Statements 3-15
Activate verify Statements in the Test Assessment Block 3-15
Author verify Statements 3-18

Verify Multiple ConditionsataTime 3-20

Assess a Model by Using When Decomposition 3-21

Test Sequence Editor 3-26
Define Test SEqQUENCES ottt 3-26
Manage Test Steps it e 3-26
Manage Input, Output, and Data Objects 3-27
Findand Replace e 3-29
Automatic Syntax Correction i, 3-30

Actions and Transitions 3-31
Transition Between Steps Using Temporal or Signal Conditions 3-31
Temporal Operators i 3-31
Transition Operators i 3-32
Use Messagesin Test Sequences, 3-33

Signal Generation Functions 3-38
Sinusoidal and Random Number Functions in Test Sequences 3-38
Using an External Function from a Test Sequence Block 3-39
Signal Generation Functions 3-40

Programmatically Create a Test Sequence 3-43

Test Sequence and Assessment Syntax 3-47
Assessment Statements 3-47
Temporal Operatorst 3-48
Transition Operatorsc. ... 3-49
Signal Generation Functions 3-50

vi

Contents

Logical Operatorst e 3-52

Relational Operatorsc.o i 3-52
Debug a Test Sequence i 3-54
View Test Step Execution During Simulation 3-54
Set Breakpoints to Enable Debugging 3-54
View Data Values During Simulation 3-55
Step Through Simulation 3-55
Test Downshift Points of a Transmission Controller 3-57

Examine Model Verification Results by Using Simulation Data Inspector

4

... 3-62
Assess Temporal Logic by Using Temporal Assessments 3-66
Create a Temporal Assessmentc0iiiiiieinnnnn.. 3-66
Define Temporal Assessment Conditions 3-67
Evaluate the SUT e 3-69

Link Temporal Assessments to Requirements 3-70
Logical and Temporal Assessment Syntax 3-71
Bounds Check Assessmentsiiiiineeinnnn... 3-71
Trigger-Response Assessmentsuiiineinnenn..n 3-71
Custom Assessmentso it e 3-73
Logical and Temporal Assessment Conditions 3-73
Observers

Access Model Data Wirelessly by Using Observers 4-2
Observer Reference Block 4-3
Connect Signals or Other Model Data Using an Observer Port Block 4-4
Trace Observed Items to Model Signals and Objects 4-6
Simulate a System Model with an Observer Reference Block 4-6
Verify Heat Pump Temperature by Using Observers 4-7
Convert Verification Subsystem to an Observer Reference 4-10

Test Harness Software- and Processor-in-the-Loop

S|

SIL Verification for a Subsystem 5-2
Create a SIL Verification Harness fora Controller 5-2
Configure and Simulate a SIL Verification Harness 5-4
Compare the SIL Block and Model Controller Outputs 5-4

Use SIL/PIL to Verify Generated Code from an Earlier Release 5-6
Reuse Generated Code i 5-6
SIL Verification of a Subsystem using Code Generated from an Earlier

REIBASE .\ 5-6

Import Test Cases for Equivalence Testing 5-14

Settings for Test Case Simulations 5-14
Top-Level Model i 5-14
Model Block in SIL/PILMode 5-15
Model Blockina Test Harness 5-16
Back-to-Back Testing a Model Using the SIL/PIL Manager App 5-17
Test Integrated Code i 5-22
Test Integrated CCode i i 5-22
Test Code in S-Functions 5-22
S-Function Testing Example 5-22

Test Manager Test Cases

6|

Manage Test File Dependencies 6-2
Package a Test File Using Projects 6-2
Find Test File Dependencies and Impact 6-4
Share a Test File with Dependencies 6-6
Compare Model Output To BaselineData 6-7
Createthe Test Case e 6-7
Run the Test Case and View Results 6-7
Creating Baseline Tests i, 6-10
Test a Simulation for Run-Time Errors 6-13
Configurethe Model i i 6-13
Createthe Test Caset e 6-13
Runthe Test Casettt e 6-14
ViewTest Results e 6-14
Automatically Create a Setof TestCases 6-16
Creating Test Cases from Model Elements 6-16
Generating Test Cases fromaModel 6-16
Generate Tests fora Component 6-21
Open the Create Test for Component Wizard 6-21
Specify ComponenttoTest 6-22
Specify Test Inputs e 6-23
Specify Test Method 6-24
Specify Howto Save TestData 6-25
Generate the Test Harness and Test Casecuovuunnnnn. 6-25
Create and Run a Back-to-BackTest 6-27
Run the Back-to-Back Test 6-30
View the Back-to-Back TestResults 6-31
Testing AUTOSAR Compeositions 6-32
Testing a Lane-Following Controller with Simulink Test 6-37

viii

Contents

Synchronize Tests i 6-49

Run Tests Using External Data 6-50
Mapping Status i e 6-50
Create a Test Case from an Excel Spreadsheet 6-50
Import an Excel Spreadsheet intoaTestCase 6-51
Add Microsoft Excel FileasInput 6-52
Add Test Data from Microsoft Excel 6-52
Add a MAT-File as an External Input 6-52

Importing Test Data from Microsoft® Excel® 6-54

Test Case Input Data Files 6-37
Generate an Excel Template 6-57
Format Test Case Datain Excel 6-60
Create a MAT-File forInputData 6-66

Capture Simulation DatainaTestCase 6-68
Add Logged Signals in the Test Manager 6-68
Capture Data from Local and Global Data Stores 6-69

Run Tests in Multiple Releases 6-72
Considerations for Testing in Multiple Releases 6-72
Add Releases Using Test Manager Preferences 6-73
Run Baseline Tests in Multiple Releases 6-73
Run Equivalence Tests in Multiple Releases 6-74
Run Simulation Tests in Multiple Releases 6-74

Examine Test Failures and Modify Baselines 6-76
Examine Test Failure Signals and Update Baseline Test 6-76
Manually Update Signal Data ina Baseline 6-78

Create and Run Test Caseswith Scripts 6-81
Create and Run a Baseline Test Casec.vvuunnnnnnnnnn 6-81
Create and Run an Equivalence TestCase 6-82
Run a Test Case and Collect Coveragecouuiirnnn.. 6-82
Create and Run Test Case Iterations 6-83

Test Iterations e 6-85
Create Table Iterations i 6-85
Create Scripted Iterations 6-87
Capture Baseline Data from Iterations 6-89
Sweep Through a Set of Parameters 6-91

Collect Coveragein Tests 6-94
Set Up Coverage Collection Using the Test Manager 6-94
View and Filter Coverage Results in the Test Manager 6-96
Coverage Filtering Using the Test Manager 6-98

Test Coverage for Requirements-Based Testing 6-100

Increase Test Coverage foraModel 6-104

Run Tests Using Parallel Execution 6-107
When Do Tests Benefit from Using Parallel Execution? 6-107

Use Parallel Execution

Set Signal Tolerances
Modify Criteria Tolerancesccii it nnn. ..
Change Leading Tolerance in a Baseline Comparison Test

Test Sections

Select Releasesfor Testing
Set Preferences to Display Test Sections
Select releases for simulation

Tags

DesCriplion e
Requirements e
System UnderTest
Parameter Overridest

Callbacks
Inputs . .

Simulation Outputs
Configuration Setting Overrides
Simulation 1 and Simulation 2
Equivalence Criteria i e
Baseline Criteria

Iterations

Logical and Temporal Assessmentsccivue..
Custom Criteriaco vt e e
Coverage Settingsv vttt
Test File Optionsot e e

Increase Coverage by Generating Test Inputs
Overall Workflow i
Test Case Generation Example

Process Test Results with Custom Scripts
MATLAB Testing Framework
Define a Custom Criteria Script
Reuse Custom Criteria and Debug Using Breakpoints
Assess the Damping Ratio of a Flutter Suppression System
Custom Criteria Programmatic Interface Example

Create, Store, and Open MATLAB Figures
Create a Custom Figure foraTestCase
Include Figuresina Report

Test Models Using MATLAB Unit Test
Overall Workflow
Considerations
Comparison of Test Nomenclature
Basic Workflow Using MATLAB® UnitTest

Output Results for Continuous Integration Systems
Test a Model for Continuous Integration Systems
Model Coverage Results for Continuous Integration

Filter and Reorder Test Executionand Results

Add Tags

6-107

6-108
6-108
6-108

6-112
6-112
6-113
6-113
6-113
6-113
6-113
6-113
6-114
6-115
6-116
6-117
6-117
6-117
6-117
6-118
6-119
6-119
6-119
6-120
6-120

6-121
6-121
6-122

6-125
6-125
6-125
6-126
6-128
6-131

6-134
6-134
6-135

6-137
6-137
6-137
6-137
6-138

6-141
6-141
6-143

6-145
6-145

ix

Filter Testsand Results 6-145
RunFiltered Tests e 6-145

7

ViewTest Case Results i 7-2
View Results Summary i 7-2
Visualize Test Case Simulation Output and Criteria 7-3

Export Test Results and Generate Test Results Reports 7-7
Export Results i e 7-7
CreateaTest Results Report 7-7
Save Reporting Options witha Test File 7-8
Generate Reports Using Templates 7-8
Generating a Test Results Report 7-10

Customize Test ResultsReports 7-11
Inheritthe Report Class 7-11
Method Hierarchy 7-11
Modify the Class 7-12
Generate a Report Using the Custom Class 7-14

Append CodetoaTestReport 7-15

Results Sections 7-17
Summary 7-18
Test Requirements i 7-18
Iteration Settings 7-18
40) 7-18
70T £ 7-18
DesCriplion e 7-18
Parameter Overrides it 7-18
Coverage Results i 7-18
Aggregated Coverage Results 7-18
Scope coverage results to linked requirements 7-19
Add Tests for Missing Coverageouiuneeiuninnennn. 7-19
Applied Coverage Filters 7-19

Generate Test SpecificationReports 7-20

Customize Test Specification Reports 7-24
Remove Content or Change Report Formatting and Section Ordering ... 7-24
Add Content to a Test Specification Report 7-27

X Contents

Real-Time Testing

8|

Test ModelsinReal Time
Overall Workflow e e
Real-Time Testing Considerations
Complete Basic Model Testing
Setup the Target Computer
Configure the Model or Test Harness,
Add Test Cases for Real-Time Testing
Assess Real-Time Execution Using verify Statements

OOOOOOOIOOOOOOOOO
QUIWWWNNDN

Reuse Desktop Test Cases for Real-Time Testing 8-10
Convert Desktop Test Casesto Real-Time 8-10
Use External Data for Real-Time Tests 8-10
Example 8-11

Verification and Validation

9

Test Model Against Requirements and Report Results 9-2
Requirements - Test Traceability Overview 9-2
Display the Requirements 9-2
Link Requirements to Tests i, 9-3
Runthe Test e e 9-4
Reportthe Results i 9-5

Analyze a Model for Standards Compliance and Design Errors 9-7
Standards and Analysis Overviewiiiineennnn.. 9-7
Check Model for Style Guideline Violations and Design Errors 9-7

Perform Functional Testing and Analyze Test Coverage 9-9
Incrementally Increase Test Coverage Using Test Case Generation 9-9

Analyze Code and Test Software-in-the-Loop 9-12
Code Analysis and Testing Software-in-the-Loop Overview 9-12
Analyze Code for Defects, Metrics, and MISRA C:2012 9-12

xi

Test Strategies

* “Link to Requirements” on page 1-2
* “Requirements-Based Testing for Model Development” on page 1-7

1 st Strategies

Link to Requirements

In this section...

“Requirements Traceability Considerations” on page 1-2

“Establish Requirements Traceability for Testing” on page 1-3

Since requirements specify behavior in response to particular conditions, you can develop test inputs,
expected outputs, and assessments from the model requirements.

Requirements

Pass /
Fail
Analysis

Test Inputs —

™,
=
Q
o
@

Assessments |[———»

Requirements Traceability Considerations

Consider the following limitations working with requirements links in test harnesses:

* Some blocks and subsystems are recreated during test harness rebuild operations. Requirements
linking is not supported for these blocks and subsystems in a test harness:
* Conversion subsystems between the component under test and the sources or sinks
+ Test Sequence blocks that schedule function calls
* Blocks that drive control input signals to the component under test
* Blocks that drive Goto or From blocks that pass component under test signals
+ Data Store Read and Data Store Write blocks
» Ifyou use external requirements storage, performing the following operations requires
reestablishing requirements links to model objects inside test harnesses:
* Cut/paste or copy/paste a subsystem with a test harness
* Clone a test harness
* Move a test harness from a linked block to the library block

1-2

Link to Requirements

Establish Requirements Traceability for Testing

If you have a Simulink Test and a Simulink Requirements™ license, you can link requirements to test
harnesses, test sequences, and test cases. Before adding links, review “Supported Requirements
Document Types” (Simulink Requirements).

Requirements Traceability for Test Harnesses

When you edit requirements links to the component under test, the links immediately synchronize
between the test harness and the main model. Other changes to the component under test, such as
adding a block, synchronize when you close the test harness. If you add a block to the component
under test, close and reopen the harness to update the main model before adding a requirement link.

To view items with requirements links, on the Apps tab, under Model Verification, Validation, and

5
Test, click Requirements Manager. In the Requirements tab, click Highlight Links Al

Requirements Traceability for Test Sequences

In test sequences, you can link to test steps. To create a link, first find the model item, test case, or
location in the document you want to link to. Right-click the test step, select Requirements, and add
a link or open the link editor.

To highlight or remove the highlighting from test steps that have requirements links, toggle the

requirements links highlighting button =5 in the Test Sequence Editor toolstrip. Highlighting test
steps also highlights the model block diagram.

Requirements Traceability for Test Cases

If you use many test cases with a single test harness, link to each specific test case to distinguish
which blocks and test steps apply to it. To link test steps or test harness blocks to test cases,

1 Open the test case in the Test Manager.

2 Highlight the test case in the test browser.

3 Right-click the block or test step, and select Requirements > Link to Current Test Case.

Requirements Traceability Example

This example demonstrates adding requirements links to a test harness and test sequence. The model
is a component of an autopilot roll control system. This example requires Simulink Test and Simulink
Requirements.

1 Open the test file, the model, and the harness.
open AutopilotTestFile.mldatx,
open_system RollAutopilotMdlRef,

sltest.harness.open('RollAutopilotMdlRef/Roll Reference',...
'RollReference Requirementl 3')

2 In the test harness, on the Apps tab, under Model Verification, Validation, and Test, click

4
Requirements Manager. In the Requirements tab, click Highlight Links ar,

1-3

1 st Strategies

The test harness highlights the Test Sequence block, component under test, and Test Assessment
block.

Pl » e
E e P
2 L » b AF g i R T ommer ..~|-| w{ -
APEng PR I

K 1) —p—m_m% 1
- s Tumroo " "

Discrete Derka e

3 Add traceability to the Discrete Derivative block.
a Right-click the Discrete Derivative block and select Requirements > Open Outgoing
Links dialog.
b In the Requirements tab, click New.
Enter the following to establish the link:

* Description: DD link

* Document type: Text file

* Document: RollAutopilotRequirements.txt
* Location: 1.3 Roll Hold Reference

1-4

Link to Requirements

Requirements | Document Index
DD Link
Mew
Lip
Do
Description: 0D Link
Diocument type: [Text fila -] Llze current
Diocument. RollautopilotRequirements. t -
Location:
(Type,/identifier) [SEarch text 1.2 Roll Hold Reference]
Uzser tag:

d Click OK. The Discrete Derivative block highlights.

To trace to the requirements document, right-click the Discrete Derivative block, and select
Requirements > DD Link. The requirements document opens in the editor and highlights the

linked text.

1.3 Roll Hold Reference

Havigate to test harness using MATLAER command:

web ("http://localhost:31415/matlab/feval/rmiobjnavigate?argu

REQUIREMENT

1.3.1 When roll hold mode becomes the active mode the roll hold

Hawvigate to test step using MATLAER command:

web('http: S localhost:31415/matlab/feval /rmiobjnavigate?argu

1.3.1.1. The roll hold reference =shall be =et to zero if the act

Hawvigate to test step using MATLAER command:

web('http: S localhost:31415/matlab/feval /rmiobjnavigate?argu

Open the Test Sequence block. Add a requirements link that links the InitializeTest step to

the test case.

a In the Test Manager, highlight Requirement 1.3 Test in the test browser.
b Right-click the InitializeTest step in the Test Sequence Editor. Select Requirements >

Link to Current Test Case.

1-5

1 st Strategies

When the requirements link is added, the Test Sequence Editor highlights the step.

Step Transition
Initialize Test 1. frue
Phi=10;

APENQ = false;
Turnknob = 0;

% Initializes test seguence outputs

See Also

1-6

Requirements-Based Testing for Model Development

Requirements-Based Testing for Model Development

Test an autopilot subsystem against a requirement.

This example demonstrates testing a subsystem against a requirement, using the test manager, test
harness, Test Sequence block, and Test Assessment block. The requirements document links to the
test case and test harness, and verify statements assess the component under test.

As you build your model, you can add test cases to verify the model against requirements.
Subsequent users can run the same test cases, then add test cases to accomplish further verification
goals such as achieving 100% coverage or verifying generated code.

This example tests the Rol1l Reference subsystem against a requirement using three scenarios. A
Test Sequence block provides inputs, and a Test Assessment block evaluates the component. The
Roll Reference subsystem is one component of an autopilot control system. Roll Reference
controls the reference angle of the aircraft's roll control system. The subsystem fails one assessment,
prompting a design change that limits the subsystem output at high input angles.

Paths and Example Files

Enter the following to store paths and file names for the example:

filePath fullfile(matlabroot, 'toolbox', 'simulinktest', 'simulinktestdemos');
topModel 'TestAndVerificationAutopilotExample';

rollModel = 'RollAutopilotMdlRef';

testHarness = 'RollReference Requirementl 3';

testFile = 'AutopilotTestFile.mldatx"';

reqDoc = 'RollAutopilotRequirements.txt’';

Open the Test File and Model

Open the Rol1AutopilotMdlRef model. The full control system
TestAndVerificationAutopilotExample references this model.

open_system(fullfile(filePath, rollModel));

1-7

1 st Strategies

Requirements-based Testing for Controller Development

This model is used to show how o perform requirements-based testing using test harnesses. Test Sequence blocks, and the test manager.
To view the demo, enter sltestRequirements TestingAutopilotDeme in MATLAB(R).

double '-I_ﬁa:ling'L’lu-dm"-k-llmpiloh Rall Autopilot
(T) double Pai Ref HAuthor: The MathWorks, Inc.
HOMG Ref Model Version: 1.228
Date: Sat Feb 29 01:48:21 2020
double . . double ‘Copyright MathWWarks 2017
L2} P Psi Phi Cmd
doubla
Psi
@ daoubla i
double |
TAS
bealean Heading Mode "—_17 AttitudeContrallerautopil
@ -"=JI - | Disp_Cmd
—..l_,_l phiCmd double
HDG Mode o
doubla Mode switch
L1) | Dizp_FB
— double double
Surf_Cmd |
double Tim [
o doubla - L doubls
: ' » Ail Cmd
1 Ei ed
» boal=an ﬂngag ZEro Eng swiich
baalean X Basic Roll Mode
L5 J] AP eng Phi Ref
AP Eng doubla
(B J——#{Tum Knob
Turn Knob
Roll Reference
RollAutopilotMdIRef.slx
Copyright 2018 The MathWorks Inc.

Open the test file in the Test Manager.

tf = sltest.testmanager.load(fullfile(filePath,testFile));
sltest.testmanager.view;

You can also open the test file by clicking Apps > Simulink Test (under Model Verification,
Validation, and Test). Then, click Simulink Test Manager and open the test file in the filePath
location.

Open the requirements document. In the test browser, expand AutopilotTestFile and Basic Design
Test Cases in the tree, and click Requirement 1.3 test. In the Requirement 1.3 test tab, expand
Requirements. Double-click on any of the requirements links to open the Requirements Editor,
where you can review the requirements.

1-8

Requirements-Based Testing for Model Development

Requirement 1.3 Test

AutopilotTestFile » Basic Design Test Cases » Requirement 1.3 T

Simulation Test

Select releases for simulation: | Current «
Create Test Case from External File

» TAGS

» DESCRIPTION

» REQUIREMENTS*

1.3.1.1: phiref = 0 if phi < 6 (RollReference#3)

1.3.1.2: phiref = 30 if phi > 30 (RollReference#4)

1.3.1.3: phiref = tk if tk »= 3 (RollReference#5)

In the document, requirement 1.3.1 states: When roll hold mode becomes the active mode, the roll
hold reference shall be set to the actual roll angle of the aircraft, except under the conditions

described in the child requirements.

* Child requirement 1.3.1.1 states: The roll hold reference shall be set to zero if the actual roll angle
is less than 6 degrees, in either direction, at the time of roll hold engagement.

* Child requirement 1.3.1.2 states: The roll hold reference shall be set to 30 degrees in the same
direction as the actual roll angle if the actual roll angle is greater than 30 degrees at the time of

roll hold engagement.

* Child requirement 1.3.1.3 states: The roll reference shall be set to the cockpit turn knob
command, up to a 30 degree limit, if the turn knob is commanding 3 degrees or more in either

direction.

The test case creates three scenarios to test the normal conditions and exceptions in the

requirement.

The requirements document traces to the test harness using URLs that map to the Test Sequence
block and test steps. Open the test harness and highlight the component associated with reference

requirement 1.3.

sltest.harness.open([rollModel '/Roll Reference'],testHarness)
rmi('highlightModel', 'Roll1Reference Requirementl 3')

1-9

1 st Strategies

L2 pal =

= 6-7 '

The Test Sequence block, Test Assessment block, and component under test link to the requirements
document. Highlight requirements links by selecting Apps > Requirements Manager and then,
clicking Highlight Links in the test harness model. You can also highlight links in the Test Sequence
Editor by clicking Toggle requirements links highlighting in the toolstrip.

Test Sequence
Open the Test Sequence block.

open_system('RollReference Requirementl 3/Test Sequence')

Step Transition Next Step
Initialize Test 1. true AttitudeLevels v
Phi=0;
APENg = false;
TurnkKnob = 0;

% Initializes test sequence outputs

B AftitudeLevels 1. EndTest == TurnKnobLevels v
Turnknob = 0;

EndTest = 0;
% Tests correct PhiRef for several attituc

Add step affer - Add sub-ztep

=2 APEngage_LowRoll 1. duration(DD_PhiRef == 0,sec) == DurationLimit APEngage_MedRoll v
% Tests low attitude

% transitions when the discrete derivative of PhiRef
% is equal to 0 for a certain time limit. This means the
% signal is not changing.

SetlLowPhi 1. true EngageAP_Low v
Phi = 4;
APENRQ = false:

The Test Sequence block creates test inputs for three scenarios:

In each test, the test sequence sets a signal level, then engages the autopilot. The test sequence
checks that PhiRef is stable for a minimum time DurationLimit before it transitions to the next
signal level. For the first two scenarios, the test sequence sets the EndTest local variable to 1,
triggering the transition to the next scenario.

1-10

Requirements-Based Testing for Model Development

These scenarios check basic component function, but do not necessarily achieve objectives such as
100% coverage.

Test Assessments
Open the Test Assessment block.
open_system('RollReference Requirementl 3/Test Assessment')

Step
H™ GlobalAssessment

NormalRange when (abs(Phi) >= 6 && Phi <= 30) && APEng == true && TurnKnob == false
verify(PhiRef == Phi,'Simulink:verify_normal’,'PhiRef must equal Phi for normal operation’)

BelowLowLimit when abs(Phi) < 6 && APEng == true && TurnKnob == false
verify(PhiRef == 0,"Simulink:verify_low''PhiRef must equal 0 for low angle operation')

ExceedPosLimit when Phi > 30 && APENng == true && Turnknob == false
verify(PhiRef == 30,"Simulink:verify_high_pos','PhiRef must equal 30 for high pos angle operation')

The Test Assessment block evaluates Roll Reference. The assessment block is a library linked

subsystem, which facilitates test assessment reuse between multiple test harnesses. The block

contains verify statements covering:

* The requirement that PhiRef = Phi when Phi operates inside the low and high limits.

* The requirement that PhiRef = 0 when Phi < 6 degrees.

* The requirement that PhiRef = 30 when Phi > 30 degrees.

* The requirement that when TurnKnob is engaged, PhiRef = TurnKnob if TurnKnob >= 3
degrees.

Verify the Subsystem

To run the test, in the Test Manager, right-click Requirement 1.3 Test in the Test Browser pane, and
click Run.

The simulation returns verify statement results and simulation output in the Test Manager. The
verify high pos statement fails.

1 (Click Results and Artifacts in the test manager.

2 In the results tree, expand Verify Statements. Click Simulink: verify high _pos. The trace
shows when the statement fails.

1-11

1 st Strategies

Results and Arfifacts [=] AutopilotTestFile » [} StartPage x| & Visualize x
| ‘_I/ Fal
~ T=1 AutopilotTestFile 19 °
~ [Basic Design Test Cases 10

+ [£] Requirement 1.3 Test

-
~[E

» g

o
o
(]
(]
v Simulink:verify_high_pos (]
@
@
@

Verify Statements

Simulink:verify_normal

. . R Pass
Simulink:verify_low

Simulink:verify_high_neg
Simulink:verify TKLow
Simulink:verify TKMNormal

Sim Output (RollAutopilotMdIRe -

Untested

1 (Click Subplots in the toolstrip and select two plots arranged vertically. Select the lower plot in

the Visualize pane.

2 In the results tree, expand Results, Requirement 1.3 Test, and Sim Output.

3 Select PhiRef and Phi. The output traces align with the verify results in the above plot.

Observe that PhiRef exceeds 30 degrees when Phi exceeds 30 degrees.

Results and Ariifacts [=] AutopiloffestFile » [H} StartPage x| [Visualize x

| =] AULURIUL ST 19

« [Basic Design Test Cases

1-12

+ [£] Reguirement 1.3 Test

~ [

-

f Fa

-

Pass

Verify Statements
Simulink:verify_normal
Simulink:verify_low

Simulink:verify_high_pos

Untested

Simulink:verify_high_neg 0 5 10 15 20 25 30 35 40 45

Simulink:verify TKLow
Simulink:verify TKNormal
Sim Output (RollAutopilotMdIiRe
+'| PhiRef —
< Phi —

APEng 10

30 f =

@@@ooonn;

20

TurmKnob —

Update Rol1Reference to limit the PhiRef signal.

1
2

Close the test harness.

Add a Saturation block to the model as shown.

50

Requirements-Based Testing for Model Development

3 Set the lower limit to -30 and the upper limit to 30.

Link the block to its requirement. From the Requirements browser, drag requirement 1.1.2 to the
Saturation block. An icon appears on the block, and the requirement is highlighted.

o eSS m_.—l Saluratian
L red switch

5N Ried Threshald ur

MinsS Six Feef Thrashakil

Uy

: =D¢ o=z . | > 1)
&P g Latch Phi !
Mot engaged Phi Rel

o &
- TK swilch

(€D,

Tum Enoh

Roll Reference

Run the test again. The verify statement passes, and the output in the test manager shows that
PhiRef does not exceed 30 degrees.

Results and Ariifacts [startPage x [Visualize

E “Tf B Simulink:verify_high_pos
STATUS Fail

- =] AutopilotTestFile 1@
=[] Basic Design Test Cases 1@

~ [£| Requirement 1.3 Test

- [[&] Verify Statements

Pass T

Simulink:verify _normal

Simulink:verify _low

Untested

Simulink:verify_high_pos

o L 0 5 10 15 20 25 30 35 40 45 50
Simulink:verify _high_neg

Simulink:verify TKLow
Simulink:verify TKNormal
~ P Sim Qutput (RollAutopilotMdIRe
+| PhiRef — 20
<+ Phi

M PhiRef ® Phi

30

® & &8 000 0O

APEng — 10

TumKnob

close system(rollModel,0);

close system(topModel,0);

close system('RollRefAssessLib',0);
sltest.testmanager.clear;

1-13

1 st Strategies

sltest.testmanager.clearResults;
sltest.testmanager.close;
clear filePath topModel regDoc rollModel testHarness testFile harnesslLink

1-14

Test Harness

* “Test Harness and Model Relationship” on page 2-2

» “Test Harness Construction for Specific Model Elements” on page 2-8

* “Create Test Harnesses and Select Properties” on page 2-12

* “Refine, Test, and Debug a Subsystem” on page 2-19

* “Manage Test Harnesses” on page 2-26

* “Customize Test Harnesses” on page 2-36

* “Create Test Harnesses from Standalone Models” on page 2-42

» “Synchronize Changes Between Test Harness and Model” on page 2-46
* “Test Library Blocks” on page 2-53

2 Test Harness

Test Harness and Model Relationship

2-2

In this section...

“Harness-Model Relationship for a Model Component” on page 2-3
“Harness-Model Relationship for a Top-Level Model” on page 2-4
“Resolving Parameters” on page 2-5

“Test Harness Considerations” on page 2-5

A test harness is a model block diagram that you can use to test, edit, or debug a Simulink model. In
the main model, you associate a harness with a model component or the top-level model. The test
harness contains a separate model workspace and configuration set. The test harness is associated
with the main model and can be accessed through the model canvas.

You build the test harness model around the component under test, which links the harness to the
main model. If you edit the component under test in the harness, the main model updates when you
close the harness. You can generate a test harness for:

* A model component, such as a subsystem, library block, Subsystem Reference block, or Model
block. The test harness isolates the component in a separate simulation environment.

* A top-level model. The component under test is a Model block referencing the main model. You
can also build a test harness in a subsystem model.

Test Harness and Model Relationship

Test Harness | Harness model workspace
T m yeE— | Hamess configuration parameters
Test Harmess ! amess model workspace| L T R Lt
| Hamess configuration parameters
ran ¥
O— - sipna jrad) » 1)
L Stk Input §in) O N alpha irad)
’:\ apba) Elewater Command fdeg) |——#(T) u ez Pilot (g » 7)
Nz Filot (g
rf‘ {1 frdimce) Component
’ Carroh Under Test
s bl component nder fesi
Under Test
—-
B EE
! I".-'quel works pacei Top-level model
1 Model configuration palametersj.

Model component

Harness-Model Relationship for a Model Component

When you associate a test harness with a model component, the harness model workspace contains
copies of the parameters associated with the component. For example, suppose that you create a test
harness for a component that contains a Gain block and then add a second Gain block to the harness.

* The parameter g defines part of the component under test, so the harness model workspace
contains a copy of g.

* The parameter a defines part of the main model outside of the component under test, so the
harness model workspace does not contain a copy of a.

* The parameter h is the gain of the Gain block that you added to the harness. Because this block is
outside the component under test, h exists only in the harness model workspace.

2-3

2 Test Harness

2-4

System model workspace | System model
g8 |

L >

Component

Harness creation l

Harness model workspace | Harness model
g |

o>

Harneszad Component

Adding a block to the
harness

Harness model workspace | Harness model

>]

Hamszsed Companent

Harness-Model Relationship for a Top-Level Model

When you associate a harness with the top level of the main model, the harness model workspace
does not contain copies of parameters relevant to the component. The component under test is a
Model block that references the main model, so the parameters remain in the main model workspace.
For example, suppose that you create a test harness for a top-level model that contains a Gain block
and then add a second Gain block to the harness.

* The component under test references the main model, and the parameter g exists in the main
model workspace. The harness model workspace does not contain a copy of g.

* The parameter h is the gain of the Gain block that you added to the harness. Because this block is
outside the component under test, h exists only in the harness model workspace.

Test Harness and Model Relationship

System model workspace System model

g {component)

o>

Harness creation l

Hameszs model workzpace Hamess model

Component under test
{modsl block)

I.D_l_'

Adding a block fo the
hamess

Hamezz modal workezpace Harnass model
h

Componant under test
D_l_. {model black]

Resolving Parameters

Parameters in the test harness resolve to the most local workspace. Parameters resolve to the

harness model workspace, then the system model workspace, then the base MATLAB® workspace.

Test Harness Considerations

* You can build a test harness for these types of model components:

Model Reference blocks
Subsystem Reference blocks
Subsystem blocks

Stateflow® blocks, including Stateflow charts, Truth Table blocks, State Transition Table
blocks, and Test Sequence blocks

C Caller blocks
MATLAB Function blocks
User-defined function blocks

* Open only one test harness at a time for each Simulink model.

* Do not comment out the component under test in the test harness. Commenting out the
component under test can cause unexpected behavior.

2-5

2 Test Harness

2-6

If a subsystem has a test harness, you cannot expand the subsystem contents into the model that
contains the subsystem. Delete the test harness before expanding the subsystem. For more
information, see “Expand Subsystem Contents” (Simulink).

Test harnesses attached to Subsystem models:

Always synchronize with the underlying model
Are created without compiling

Do not support post-build callbacks

Do not support SIL/PIL verification mode

Do not auto shape inputs

Subsystem Reference blocks sync their block parameters, but not their block contents.
Test harnesses are not supported for these types of Stateflow objects:

Atomic subcharts
Simulink based states
Simulink functions
MATLAB functions

The Upgrade Advisor and XML differencing are not supported for test harness models.
A test harness with a Signal Builder block source does not support:

Frame-based signals
Complex signals
Variable-dimension signals

For a test harness with a Test Sequence block or Stateflow chart as the source, all inputs to the
component under test must operate with the same sample time.

These considerations apply to collecting coverage in a test harness:

Loading coverage results to a model, or aggregating coverage results across models, requires
a model consistent with the coverage results. Therefore, to perform aggregated coverage
collection, it is recommended that you use test harnesses configured to automatically
synchronize the component under test. Set SynchronizationMode to Synchronize on
harness open and close. For more information, see “Synchronize Changes Between Test
Harness and Model” on page 2-46.

If the test harness is configured to synchronize the component under test when you open or
close the harness, coverage results from the test harness are associated with the main model.
When you close the test harness, the coverage results remain active in memory. You can
aggregate coverage with additional results collected from the main model or another
synchronized test harness.

If the test harness is configured to only synchronize the component under test when you
manually push or rebuild, the coverage results are associated with the test harness.
* When you close the test harness, the coverage results are removed from memory.

» If the component under test design differs between test harness and main model, you
cannot aggregate coverage results.

* You can aggregate coverage results with the main model if the component under test design
does not differ; but you must manually load the coverage results into the main model. See
the function cvload.

Test Harness and Model Relationship

For information on coverage, see “Collect Coverage in Tests” on page 6-94
See Also

More About
. “Compare Capabilities of Model Component Types” (Simulink)

2-7

2 Test Harness

Test Harness Construction for Specific Model Elements

2-8

A test harness consists of one or more source blocks that drive the component under test, which
drives one or more sink blocks. Test harness construction configures signal attributes, function calls,
data stores, and execution semantics. When possible, the test harness matches signal attributes at
the sources, sinks, and component interface. For more information on selecting sources and sinks,
see “Sources and Sinks” on page 2-14.

Under Test

P

Component '—
1
-

Sources Signal Signal Sinks
conversion conversion

Signal Conversion

Signal conversion subsystems adapt the signal interface of the source and sink blocks to the
graphical interface of the component. The graphical interface of the component includes input
signals, output signals, and action, trigger, or enable inputs. The test harness compiles the main
model to determine signal attributes:

* Data type

* Dimensions

* Complexity
Signal attributes are adapted to the sources during harness construction in one of two ways:

Source blocks that can generate signals with the compiled attributes are configured to do so.

2 If a source block cannot generate signals with the compiled attributes, signal attribute blocks in
the signal conversion subsystem adapt the output of the source blocks. Signal attribute blocks
include Reshape, Rate Transition and Data Type Conversion blocks.

By default, signal conversion subsystems are locked from editing.

Function Calls
Function Call Drivers

If the component under test has function call inputs, a Test Sequence block, MATLAB Function block,
or Stateflow chart source generates function call inputs to the component, even if you select a
different source during harness creation. To override this behavior and connect function call inputs to
your selected source type, create the test harness with the sltest.harness.create function, and
set 'DriveFcnCallWithTestSequence' to false. For example:

Test Harness Construction for Specific Model Elements

sltest.harness.create('Model/FcnCallSubsystem', 'Source', 'From File', ...
'DriveFcnCallWithTestSequence', false)

Function Call Outputs

Function call outputs of the component under test connect to Terminator blocks.

Physical Signal Connections

Components that accept or output physical signals are supported during harness construction, but
sources and sinks are not generated. You can add physical modeling blocks to the test harness after
construction.

Bus Signals

Test harnesses configuration for bus inputs and outputs depends on the bus connection ability of the
source or sink blocks:

1 Sources and sinks that can accept a bus signal are directly connected to the component without
modification.

2 If a source cannot output a bus signal, bus signals are automatically constructed from individual
bus elements in the signal conversion subsystem.

3 Ifasink cannot accept a bus signal, bus signal elements are expanded from the bus signal in the
signal conversion subsystem.

String Signals

If the component under test uses string data inputs, and your test harness source does not support
string data, string inputs are connected to Ground blocks.

String Inputs

Harness Source Selection Source Block for String Inputs

Inport Inport

Signal Builder Ground

Signal Editor Ground

From Workspace Ground

From File Ground

Test Sequence Ground

Chart Ground

Constant String Constant (individual string input)
Ground (bus containing string)

Ground Ground

If the component under test uses string data outputs, and your test harness sink does not support
string data, string outputs are connected to Terminator blocks.

2-9

2 Test Harness

2-10

String Outputs

Harness Sink Selection Sink Block for String Outputs
Outport Outport

Scope Terminator

To Workspace Terminator

To File Terminator

Terminator Terminator

Non-Graphical Connections

In addition to the graphical interface of a component, Simulink supports several non-graphical
connections. Test harness construction also supports non-graphical connections.

Goto-From Connections

Goto-From block pairs that cross the component boundary are considered component inputs or
outputs.

* A From block without a corresponding Goto block in the component is considered a component
input signal. The test harness includes a source block with a corresponding Goto block.

* A Goto block without the corresponding From block in the component is considered a component
output signal. The test harness includes a sink block with a corresponding From block.

Data Store Memory

Data Store Read and Data Store Write blocks require a complete data store definition in the test
harness.

» Ifa Data Store Read or Data Store Write block lacks a corresponding Data Store Memory block in
the component, the test harness adds a Data Store Memory block.

* For a component containing only Data Store Read blocks, the test harness adds a source block
driving a Data Store Write block.

* For a component containing only Data Store Write blocks, the test harness adds a Data Store Read
block driving a sink block.

If global data store memory read or write usage cannot be determined, then Data Store Read and
Data Store Write blocks are not included in the test harness.

Simulink Function Definitions

If the component calls a Simulink Function that is not defined in the component, the test harness
adds a stub Simulink Function block matching the function call signature.

Export Function Models

Test harnesses contain a function-call scheduler for components that use the export-function
modeling style. The scheduler is a Test Sequence block, MATLAB Function block, or Stateflow chart
that contains prototype calls to the functions in your model.

The scheduler Test Sequence block includes a test step containing:

Test Harness Construction for Specific Model Elements

* A catalog of globally scoped Simulink Function blocks in the component.
* Alist of function-call triggers accessible at the component interface.

Harness construction honors periodic function-call triggers with appropriate decimation of the
function-call event in the Test Sequence block, MATLAB Function block, or Stateflow chart.

Test harnesses include Initialize, Terminate, and Reset steps for models that contain
Initialize, Terminate, and Reset event subsystems. You can include Initialize, Terminate,
and Reset steps for other export-function models using the 'ScheduleInitTermReset' property
of sltest.harness.create.

Execution Semantics

The execution behavior of a component depends on factors such as computed sample times, solver
settings, model configuration, and parameter settings. Execution behavior also depends on run-time
events such as function-call triggers and asynchronous events. To handle these execution semantics,
test harness construction:

Copies configuration parameter settings from the main model into the test harness.

2 Copies required parameter definitions from the main model workspace into the test harness
model workspace.

Copies data dictionary settings from the main model into the test harness.

Honors a limited subset of sample time settings using explicit source block specifications and
Rate Transition blocks.

Other factors, such as additional blocks in the harness and solver heuristics, can cause test harness
execution to differ from the main model. The graphical and compiled interface of the component
takes precedence over other execution semantics.

Sample Time Specification

Simulink supports an array of sample times, including types that are derived during model
compilation. Test harness construction supports periodic discrete, continuous, and fixed-in-minor-step
sample times with these considerations:

* Source blocks that support the desired rate are configured to do so, and the signal conversion
subsystem contains a Signal Specification block with the rate specification.
» Test harness construction does not configure source blocks that cannot support the desired rate.
o If the desired rate is periodic discrete or fixed-in-minor-step, the test harness contains a Rate
Transition block in the signal conversion subsystem.

+ Ifthe desired rate is continuous, the execution semantics are determined by the solver. The
signal conversion subsystem does not contain a Rate Transition block.

Other sample time specifications are ignored during test harness construction. In those cases,
solver settings determine execution behavior.

See Also
“Create Test Harnesses and Select Properties” on page 2-12

2-11

2 Test Harness

Create Test Harnesses and Select Properties

2-12

In this section...

“Create a Test Harness For a Top Level Model” on page 2-12
“Create a Test Harness for a Model Component” on page 2-12
“Preview and Open Test Harnesses” on page 2-13

“Change Test Harness Properties” on page 2-13

“Considerations for Selecting Test Harness Properties” on page 2-14
“Harness Name” on page 2-14

“Save Test Harnesses Externally” on page 2-14

“Sources and Sinks” on page 2-14

“Create scalar inputs” on page 2-15

“Add scheduler for function-calls and rates / Generate function-call signals using” on page 2-15
“Enable Initialize, Reset, and Terminate ports” on page 2-15

“Add Separate Assessment Block” on page 2-15

“Open Harness After Creation” on page 2-15

“Create without compiling the model” on page 2-16

“Verification Modes” on page 2-16

“Use generated code to create SIL/PIL block” on page 2-16

“Build folder” on page 2-16

“Post-create callback method” on page 2-16

“Rebuild harness on open” on page 2-17

“Update Configuration Parameters and Model Workspace data on rebuild” on page 2-17
“Post-rebuild callback method” on page 2-17

“Synchronization Mode” on page 2-17

Create a Test Harness For a Top Level Model

To create a test harness for a top-level model (including Subsystem and Model reference models):

1

2

Right-click in the Simulink model and click Test Harness > Create for Model to open the
Create Test Harness dialog box.

After selecting the desired options, click OK to create the test harness.

Create a Test Harness for a Model Component

To create a test harness for a single model component:

B W N =

On the Apps tab, under Model Verification, Validation, and Test, click Simulink Test.
On the Tests tab, click Simulink Test Manager to open the Test Manager.
Create a new test file in the Test Manager.

Click New > Test for Model Component, which opens the Create Test For Model Component
workflow wizard.

Create Test Harnesses and Select Properties

5 Create the test harness by completing the wizard pages.

Note The Create Test For Model Component workflow wizard exposes a subset of test harness
options. If your test harness does not need to use non-default options, use the wizard to create a
harness quickly. If you need to change other options, use the Test Manager for the test harness you
created with the wizard.

For information on using the wizard and the properties it sets, see “Generate Tests for a Component”
on page 6-21.

Preview and Open Test Harnesses

When a model component has a test harness, a badge appears in the lower right of the block. To view
the test harnesses, click the badge. To open a test harness, click a tile.

- = —_ - LFLILIUL LU LU 1 e |
| | Wehick
sf_car_Hamness3
sf_car_Harmnessl sf_car_Hamess? - -
| Intemal Test Harnesses Open test harness|
e —

To view test harnesses for a model block diagram, click the pullout icon in the model canvas. To open
a test harness, click a tile.

sltestPro...Hamess2 sltestPro...Hamess3 sltestPro...Hamess4 sltestProj...Controller

Internal Test Harnesses Interface

Change Test Harness Properties

To change properties of an open test harness, click the badge " in the test harness block diagram
and click Test harness properties to open the harness properties dialog box.

To change properties of test harnesses from the main model, click the Harness operations icon from
the test harness preview.

2-13

2 Test Harness

2-14

G Funpties S allay
Harness1
Harmess2

o

| Harness operations h
e || |

Considerations for Selecting Test Harness Properties
Before selecting test harness properties, consider the following:

* What data source you want to use for your test case input

* How you want to view or store test output

* Whether you want to copy parameters and workspaces from the main model to the harness

* Whether you plan to edit the component under test

* How you want to synchronize changes between the test harness and model

Except for sources and sinks, you can change harness properties later using the harness properties

dialog box. To change sources and sinks after harness creation, manually remove the blocks from the
test harness and replace them with new sources and sinks.

Note The following sections describe the test harness properties in the Create Test Harness dialog
box. For information on the test harness properties in the Create Test for Model Component wizard,
see “Generate Tests for a Component” on page 6-21.

Harness Name

Test harnesses must use valid MATLAB filenames.

Save Test Harnesses Externally

This option controls how the model stores test harnesses. A model stores all its test harnesses either
internally or externally. If a model already has test harnesses, this item states the harness storage
type as Harnesses saved <internally|externally>.

* When cleared, the model saves test harnesses as part of the model SLX file.

* When selected, the model saves test harnesses in separate SLX files to the current working folder,
and adds a harness information XML file to the model folder. The harness information file must
remain in the same folder as the model.

See “Manage Test Harnesses” on page 2-26.

Sources and Sinks

In the Create Test Harness dialog box, under Sources and Sinks, select the source and sink from
the respective menus. The menus provide common sources and sinks.

Create Test Harnesses and Select Properties

You can use source and sink blocks from the Simulink Sources or Sinks library. Select Custom source
or sink, and enter the path to the block. For example:

simulink/Sources/Sine Wave

simulink/Sinks/Terminator

Custom sources and sinks build the test harness with one block per port.

Create scalar inputs

When you select this property, the test harness creates scalar inputs for multidimensional signals.
The individual scalar inputs are reshaped to match the dimension of the input signals to the
component under test. This option applies to test harnesses with Inport, Constant, Signal Builder,
From Workspace, or From File source blocks. This option does not apply to Subsystem models.

Add scheduler for function-calls and rates / Generate function-call
signals using

The title of this option depends on whether the component under test is a subsystem or a model. To
include a scheduler block in your test harness, select a block from the drop-down list.

* Add scheduler for function-calls and rates: For a model, you can use the block to call
functions and set sample times for model inputs and outputs.

* Generate function-call signals using: For a subsystem, you can use the block to call functions
in the subsystem.

Enable Initialize, Reset, and Terminate ports

Selecting this option exposes initialize, terminate, or reset function-call ports in the component under
test and connects the scheduler block to the ports.

This option appears when you create a test harness for a top-level model and select a block for the
Add scheduler for function-calls and rates option.

Add Separate Assessment Block

Select Add separate assessment block to include a separate Test Assessment block in the test
harness.

A Test Assessment block is a separate Test Sequence block configured with properties commonly
used for verifying the component under test. For more information, see “Assess Simulation and

Compare Output Data” on page 3-11 and “Assess Model Simulation Using verify Statements” on
page 3-15.

Open Harness After Creation

Clear Open Harness After Creation to create the test harness without opening it. This can be
useful creating multiple test harnesses in succession.

2-15

2 Test Harness

Create without compiling the model

Creating a test harness without compiling the model can be useful if you are prototyping a design
that cannot yet compile. When you create a test harness without compiling the main model:

* Parameters are not copied to the test harness workspace.

* The main model configuration is not copied to the test harness.

* The test harness does not contain conversion subsystems.

You may need to add blocks such as signal conversion blocks to the test harness. You can rebuild the

harness when you are ready to compile the main model. For more information, see “Synchronize
Changes Between Test Harness and Model” on page 2-46.

Test harnesses for Subsystem models are created without compiling the model.

Verification Modes

The test harness verification mode determines the type of block generated in the test harness.

* Normal: A Simulink block diagram.

*+ Software-in-the-Loop (SIL): The component under test references generated code,
operating as software-in-the-loop. Requires Embedded Coder®.

* Processor-in-the-Loop (PIL): The component under test references generated code for a
specific processor instruction set, operating as processor-in-the-loop. Requires Embedded Coder.

Subsystem model test harnesses do not support SIL or PIL verification.

Note Keep the SIL or PIL code in the test harness synchronized with the latest component design. If
you select SIL or PIL verification mode without selecting Rebuild harness on open, your SIL or PIL
block code might not reflect recent updates to the main model design. To regenerate code for the SIL
or PIL block in the test harness, select Rebuild Harness > Update Harness Configuration
Settings and Model Workspace.

Use generated code to create SIL/PIL block
If generated code for the SIL/PIL block already exists, select this property to use that existing code

instead of regenerating the code. This option is available only for subsystem harnesses. It does not
apply to Subsystem model test harnesses.

Build folder

Specify the folder that contains the generated code for the SIL/PIL block. This option is available only
if you selected Use generated code to create SIL/PIL block.

Post-create callback method

You can customize your test harness using a post-create callback. A post-create callback is a function
that runs after the harness is created. For example, your callback can set up signal logging, add

2-16

Create Test Harnesses and Select Properties

custom blocks, or change the harness simulation times. For more information, see “Customize Test
Harnesses” on page 2-36. This option does not apply to Subsystem model test harnesses.

Rebuild harness on open

When you select this property, the test harness rebuilds every time you open it. If you specified to use
existing generated code for a SIL/PIL subsystem using sltest.harness.create or
sltest.harness. set, the harness rebuild uses that code instead of regenerating it. For details on
the rebuild process, see “Synchronize Changes Between Test Harness and Model” on page 2-46.

This option does not apply to Subsystem model test harnesses.

Update Configuration Parameters and Model Workspace data on
rebuild

When you select this property, configuration parameters and model workspace data update when you
rebuild the harness. For details on the rebuild process, see “Synchronize Changes Between Test
Harness and Model” on page 2-46. This option does not apply to Subsystem model test harnesses.

Post-rebuild callback method

You can customize your test harness using a post-rebuild callback. A post-rebuild callback is a
function that runs after the harness is rebuilt. For example, your callback can set up signal logging,
add custom blocks, or change the harness simulation times. For more information, see “Customize
Test Harnesses” on page 2-36. This option does not apply to Subsystem model test harnesses.

Synchronization Mode

Synchronization mode controls when changes to the component under test are synced to the main
model, and when changes to the harness owner are synced into a test harness.

* Synchronize on harness open — When the test harness opens, the test harness components,
configuration set, and parameters synchronize from the model to the test harness. This option is
available for:

* Block diagrams

* Subsystems, including Stateflow charts and MATLAB Function blocks

* For Subsystem Reference blocks, only the block parameters are synced, not the block contents.
* Model reference blocks

* S-function blocks
The Synchronize on harness open option is not available for:

+ SIL/PIL harnesses
* Subsystem model harnesses

* Synchronize on harness open and close — When the test harness opens, the test harness
components, configuration set, and parameters synchronize from the model to the test harness.
When the test harness closes, the same elements synchronize from the harness to the model. This
option is available for:

2-17

2 Test Harness

* Block diagrams

* Subsystems, including Stateflow charts and MATLAB Function blocks

* For Subsystem Reference blocks, only the block parameters are synced, not the block contents.
* Model reference blocks

* S-function blocks

* Subsystem model harnesses

The Synchronize on harness open and close option is not available for:

* Block diagrams
» SIL/PIL harnesses
* Subsystem model harnesses

* Synchronize only during push and rebuild — Synchronizes when you click Push Changes or
Rebuild Harness. Push Changes synchronizes changes from the test harness to the model.
Rebuild Harness synchronizes changes from the model to the test harness. This option is
available for:
* Subsystems, including Stateflow charts and MATLAB Function blocks
* Model reference blocks
* S-function blocks

* Subsystem models, which always synchronize on push and rebuild only.

The Synchronize only during push and rebuild option is not available for:

* Block diagrams
o SIL/PIL harnesses
* Components in libraries
* Synchronize only during rebuild — Synchronizes only when you click Rebuild Harness.
Rebuild Harness synchronizes changes from the model to the test harness. This option is
available for:
* Block diagrams
* Subsystems, including Stateflow charts and MATLAB Function blocks
* Model reference blocks
* S-function blocks
o SIL/PIL verification mode components

The Synchronize only during rebuild option is not available for:

* Components in libraries

See Also
Test Sequence | “Synchronize Changes Between Test Harness and Model” on page 2-46

2-18

Refine, Test, and Debug a Subsystem

Refine, Test, and Debug a Subsystem

In this section...

“Model and Requirements” on page 2-19

“Create a Harness for the Controller” on page 2-21
“Inspect and Refine the Controller” on page 2-22

“Add Test Inputs and Test the Controller” on page 2-22
“Debug the Controller” on page 2-23

Test harnesses provide a development and testing environment that leaves the main model design
intact. You can test a functional unit of your model in isolation without altering the main model. This
example demonstrates refining and testing a controller subsystem using a test harness. The main
model is a controller-plant model of an air conditioning/heat pump unit. The controller must operate
according to several simple requirements.

Model and Requirements

1 Access the model. Enter

cd(fullfile(docroot, 'toolbox', 'sltest', 'examples'))
2 Copy this model file and supporting files to a writable location on the MATLAB path:
sltestHeatpumpExample.slx

sltestHeatpumpBusPostLoadFcn.mat
PumpDirection.m

3 Open the model.

open_system('sltestHeatpumpExample')

2-19

2 Test Harness

2-20

delay

Time delay sec

DeltaT _fan

DSM fantemp

DeltaT_pumy

DS pump temp

CGo—

In1

Teet

control_out

Troom_in

Contraller

delay
dela
Y Write1
DeltaT_fan
DT_fa
—an Wirite2
D&ItaT _pump
DT_pum
-Pame Writed
=% control_in
Troom
Toutsde
Plart

In the example model:

Copyright 19902014 The M athWors Inc.

The controller accepts the room temperature and the set temperature inputs.
The controller output is a bus with signals controlling the fan, heat pump, and the direction of the
heat pump (heat or cool).
The plant accepts the control bus. The heat pump and the fan signals are Boolean, and the heat
pump direction is specified by +1 for cooling and -1 for heating.

The test covers four temperature conditions. Each condition corresponds to one operating state with
fan, pump, and pump direction signal outputs.

|[Troom - Tset| >= DeltaT pump and
Tset < Troom

Temperature condition System Fan Pump Pump
state command | command | direction
|[Troom - Tset| < DeltaT fan idle 0
DeltaT fan <= |[Troom - Tset| < fan only 1 0
DeltaT pump
cooling 1 -1

Refine, Test, and Debug a Subsystem

Temperature condition System Fan Pump Pump
state command | command | direction
|Troom - Tset| >= DeltaT pump and heating 1 1 1
Tset > Troom

3

Create a Harness for the Controller

Right-click the Controller subsystem and select Test Harness > Create for ‘Controller’.

Set the harness properties:
In the Basic Properties tab:

* Name: devel harnessl

* C(lear Save test harness externally

* Sources and Sinks: None and Scope

* Clear Add separate assessment block
* Select Open harness after creation

Create Test Harness

Component under test: sltestHeatpumpExample/Controller

Basic Properties | Advanced Properties I Description |

Specify the properties of the test harness. The compeonent under test is the system for which the harness is
being created. After creation, use the block badge to find and open harnesses.

==l

Name: devel_harnessl

[C] save test harnesses externally More information

Sources and Sinks

==>| Component under Test |=—{>
[7] Add separate assessment block
Open harness after creation
J OK] ’ Cancel] [Help

Click OK to create the test harness.

2-21

2 Test Harness

Test

Troom_in

control_out g

T

Controller

(V)

4”” o e DeltaT_fan

Signal spac

DeltaT_fan and routing

DSM fan temp

4’| DaltaT.
) DSM pump temp et _pump |

DeltsT_purmp I

Time delay sec

Signal spec
and routing

DSM pump temp

Time delay sec

Inspect and Refine the Controller

1 In the test harness, double-click Controller to open the subsystem.

2 Connect the chart to the Inport blocks.

"yl deed_hamness_1 b [y Conoler B

T_req D
mp_cmd
T

T_meas

-
fan_cmd

control_out

-
-

pump_dir
P -

controller_chart

3 In the test harness, click the Save button to save the test harness and model.

Add Test Inputs and Test the Controller

Navigate to the top level of devel harnessl.

2 Create a test input for the harness with a constant Tset and a time-varying Troom. Connect a

Constant block to the Tset input and set the value to 75.

3 Add a Sine Wave block to the harness model to simulate a temperature signal. Connect the Sine

Wave block to the conversion subsystem input Troom in.

4 Double-click the Sine Wave block and set the parameters:

* Amplitude: 15
* Bias: 75

2-22

Refine, Test, and Debug a Subsystem

Frequency: 2*pi/3600
Phase (rad): 0
Sample time: 1

Select Interpret vector parameters as 1-D.

5 Connect Inport blocks to the Data Store Write inputs.

75 L 1 Teat
Constant
control_out
I."'.IL I Troom_in
_FJI L
Sine Wave Controller
—F ¥ DeltaT_fan DeltaT_fan
- D5M fan temp
n
DEM fan temp
—F DEM pump 5me ¥ DeltaT_pump DeltaT _pump
n
DEM pump temp
 del del
@ Time delay sec . .
n

Signal sper
and routing

Time delay sec

Signal spac
and routing

6 In the Configuration Parameters dialog box, in the Data Import/Export pane, select Input and

enter u. u is an existing structure in the MATLAB base workspace.
In the Solver pane, set Stop time to 3600.

Open the scope in the test harness and change the layout to show three plots.

Click Run to simulate.

Debug the Controller

1 Observe the controller output. fan_cmd is 1 during the IDLE condition where |Troom - Tset|
< DeltaT fan.

This is a bug. fan_cmd should equal 0 at IDLE. The fan cmd control output must be changed for
IDLE.

2-23

2 Test Harness

In the harness model, open the Controller subsystem.
Open controller chart.

In the IDLE state, fan cmd is set to return 1. Change fan cmd to return 0. IDLE is now:

IDLE

entry:

fan_cmd = 0;
pump _cmd = 0;
pump dir = 0;

5 Simulate the harness model again and observe the outputs.

2-24

Refine, Test, and Debug a Subsystem

6 fan_cmd now meets the requirement to equal 0 at IDLE.

See Also

Related Examples

. “Test Downshift Points of a Transmission Controller” on page 3-57

2-25

2 Test Harness

Manage Test Harnesses

2-26

In this section...

“Internal and External Test Harnesses” on page 2-26

“Manage External Test Harnesses” on page 2-26

“Convert Between Internal and External Test Harnesses” on page 2-27
“Preview and Open Test Harnesses” on page 2-28

“Find Test Cases Associated with a Test Harness” on page 2-29
“Export Test Harnesses to Separate Models” on page 2-29

“Clone and Export a Test Harness to a Separate Model” on page 2-30
“Delete Test Harnesses Programmatically” on page 2-32

“Move and Clone Test Harnesses” on page 2-33

Internal and External Test Harnesses

You can save test harnesses internally as part of your model SLX file, or externally in separate SLX
files. A model stores all test harnesses either internally or externally; it is not possible to use both
types of harness storage in one model. You select internal or external test harness storage when you
create the first test harness. If your model already has test harnesses, you can convert between the
harness storage types.

If you store your model in a configuration management system, consider using external test
harnesses. External test harnesses enable you to create or change a harness without changing the
model file. If you plan to share your model often, consider using internal test harnesses to simplify file
management. Creating or changing an internal test harness changes your model SLX file. Both
internal and external test harnesses offer the same synchronization, push, rebuild, and badge
interface functionality.

See “Create Test Harnesses and Select Properties” on page 2-12.

Manage External Test Harnesses

Harnesses stored externally use a separate SLX file for each harness, and a
<modelName> harnessInfo.xml file containing metadata linking the model and the harnesses.
Changing test harnesses can change the harnessInfo.xml file.

Follow these guidelines for external test harnesses:

Warning Do not delete the harnessInfo.xml file. Deleting the harnessInfo.xml file terminates
the relationship between the model and harnesses, which cannot be regenerated from the model.

* The harnessInfo.xml file must be writable to save changes to the test harness or the main
model.

* Keep the harnessInfo.xml file in the same folder as the main model. If the harnessInfo.xml
file and the model are in separate folders, the main model opens but does not present the test
harnesses.

Manage Test Harnesses

Directories containing test harness SLX files must be on the MATLAB path.

If you convert internal test harnesses to external test harnesses, the new SLX files save to the
current working folder.

If you convert external test harnesses to internal test harnesses, the external SLX files can be
anywhere on the MATLAB path.

If your model uses external test harnesses, only create a copy of your model using Save > Save
as. Using Save as copies external test harnesses to the destination folder of the new model and
keeps the harness information current.

Copying the model file on disk will not copy external harnesses associated with the model.
Only change or delete test harnesses using the Simulink Ul or commands:

* To delete test harnesses, use the thumbnail UI or the sltest.harness.delete command.

* To rename test harnesses, use the harness properties Ul or the sltest.harness.set
command.

+ To make a copy of an externally saved test harness, use the sltest.harness.clone
command or save the test harness to a new name using Save > Save as.

Deleting or renaming harness files outside of Simulink causes an inaccurate harnessInfo.xml
file and problems loading test harnesses.

Convert Between Internal and External Test Harnesses

You can change how your model stores test harnesses at different phases of your model lifecycle. For
example:

Develop your model using internal test harnesses so that you can more easily share the model for
review. When you complete your design and place the model under change control, convert to
external harnesses.

Use the configuration management model as the starting point for a new design. Test the existing
model with external harnesses to avoid modifying it. Then, create a copy of the existing model.
Convert to internal harnesses for the new development phase.

To change the test harness storage to external (or internal):

Navigate to the top of the main model.

On the Apps tab, under Model Verification, Validation, and Test, click Simulink Test. Then, on
the Tests tab, click Manage Test Harnesses > Convert to External Harnesses or Convert to
Internal Harnesses.

A dialog box provides information on the conversion procedure and the affected test harnesses.
Click Yes to continue.
The harnesses are converted.

The conversion to external test harnesses creates an SILX file for each test harness and a harness
information XML file <modelName> harnessInfo.xml.

2-27

2 Test Harness

Current Folder (O]
i External TestHamesses
Name 22 This example model contins testham esses siored extemnallyin separake SLX fles fom the model.
|*&|| heading_mode_harness.sh 5
&l roll_mode_harness.sh S
|*a| roll_reference_harnessl.ske 5 P':Ie;:;w |
%al| roll_reference_logged_data_harness.skx S o Rt i TN
M odel Versioe: 1 2
|| sltestExternal TestHarnessExample.she S H Pl PRICma Do O7-Diac205 085722
i’ top_maodel_harness.sh S = Q
| |sitestExternalTestHarnessExarmple_harnessinfo.xmil | h . CO—ms
™S
Headihg Mode -
= —— Q@ J;—h.;:nsornolummnlo
HDGE Mode MOGELI!WD:W
Test harnesses (&’ s s
B Pl Surt_
Main model [NN N ;
. . =
Harness information file L [| rom
. zero Eng swich
= == — Besk RoliMode
AF Eng
GO——sfmes
Tum Knoo
Roll Re ference
Copyright 2015 The M athWors Inc.

Inversely, conversion to internal test harnesses moves the test harness SLX files and the
harnessInfo.xml file.

Current Folder
Nai Intemal Test Hamesses
Thi npie model contsins Est hamesses sored inemall rtofthe model SLX fils..
1% shtestinternalTestHarnessExample.skx | A= crample Tuodel conoig === mEmaly=s parioline mes
+ o coesermol
1 1 L t Revised
Main model, which Ho3 R Ao T o
] sornc 1223
includes test harnesses @ = = oo ke
o=
TAS ot
Feaig Mode ? AStuseConToier Auooid)
& e LT
HOO Mooe Mot
3 =0 Fs
& -
: . [S A :
Yiew and manage test harnesses in this model. o m » forp e
Filter by harness owner : ;.-‘-\JI e S
@ . s Bamic RoliM oge
Mame Properties Delete AR ET
Properties Delete GO
roll reference h.. Properties Delate Pelfmeson
roll reference lo... Properties Delete
iroll mode harness Properties Delate
|heading mode ... Properties Delete Copirion: 2015 The M svnens

Preview and Open Test Harnesses

When a model component has a test harness, a badge appears in the lower right of the block. To view
the test harnesses, click the badge. To open a test harness, click a tile.

2-28

Manage Test Harnesses

LRI I gue) e

Wehiche

sf_car_Harnessl sf_car_Hamness2

|sf_car_Harness3 |

~

Intemnal Test Harnesses

Open test harness|

oF b

To view test harnesses for a model block diagram, click the pullout icon in the model canvas. To open

a test harness, click a tile.

sltestPro.. Hamess2 sltestPro.. Hamess3 sltestPro.. Hamess4

sltestProj... Controller

Internal Test Harnesses

Interface

Find Test Cases Associated with a Test Harness

To list open test cases that refer to the test harness, click the badge

You can click a test case name and navigate to the test case in the Test Manager.

Test harness properties ...

Open test cases:

sltestProjectorFanSpeedTestSuite :

Fan Speed = 2300

sltestProjectorFanSpeedTestSuite :

Fan Speed = 1800

sltestProjectorFanSpeedTestSuite @

Fan Speed = 1300

sltestProjectorFanSpeedTestSuite @

Fan Speed = 800

=)

Export Test Harnesses to Separate Models

You can export test harnesses to separate models, which is useful for archiving test harnesses or

sharing a test harness design without sharing the model.

HH | .
in the test harness canvas.

2-29

2 Test Harness

2-30

* To export an individual test harness:
1 On the Apps tab, under Model Verification, Validation, and Test, click Simulink Test. Then,
on the Tests tab, select Manage Test Harnesses > Detach and Export.
A dialog box confirms the harness export. Click OK.
Enter a file name for the separate model.

The harness converts to a separate model. Converting removes the harness from the main
model and breaks the relationship to the main model.

» To export all harnesses in a model:

1 Navigate to the top level of the test harness.
Select no blocks.

On the Apps tab, under Model Verification, Validation, and Test, click Simulink Test. Then,
on the Tests tab, select Manage Test Harnesses > Detach and Export.

4 A dialog box confirms the harness export. Click OK.

The harnesses convert to separate models. Converting removes the harnesses from the main
model and breaks the relationships to the main model.

See sltest.harness.export.

Clone and Export a Test Harness to a Separate Model

This example demonstrates cloning an existing test harness and exporting the cloned harness to a
separate model. This can be useful if you want to create a copy of a test harness as a separate model,
but leave the test harness associated with the model component.

High-level Workflow
1 Ifyou don't know the exact properties of the test harness you want to clone, get them using
sltest.harness.find. You need the harness owner ID and the harness name.

Clone the test harness using sltest.harness.clone.

Export the test harness to a separate model using sltest.harness.export. Note that there is no
association between the exported model and the original model. The exported model stands
alone.

Open the Model and Save a Local Copy

model = 'sltestTestSequenceExample';
open_system(model)

Manage Test Harnesses

Testing Downshift Points of a Transmission Controller

This example shows how to create a Test Harness with a Test Sequeance block a5 a source.

¢ [brake]

brake

brake] brake
[throttie] >—| thrattle 1 e 1)

:é

shift_controller wehicla

Caopyright 2016 The MathWorks, Inc.

Save the local copy in a writable location on the MATLAB path.
Get the Properties of the Source Test Harness

properties = sltest.harness.find([model '/shift controller'l])

properties
struct with fields:

model: 'sltestTestSequenceExample'
name: 'controller harness'
description: "'
type: 'Testing'
ownerHandle: 10.0029
ownerFullPath: 'sltestTestSequenceExample/shift controller'
ownerType: 'Simulink.SubSystem'
isOpen:
canBeOpened:
lockMode:
verificationMode:
saveExternally:
rebuildOnOpen:
rebuildModelData:
postRebuildCallback:
graphical:
origSrc: 'Test Sequence'
origSink: 'Test Assessment'
synchronizationMode: 0
existingBuildFolder: "'

[cEENcoNoNoNoNoN TNo)

Clone the Test Harness

Clone the test harness using sltest.harness.clone, the ownerFullPath and the name fields of the
harness properties structure.

2-31

2 Test Harness

sltest.harness.clone(properties.ownerFullPath,properties.name, 'ControllerHarness2"')
Save the Model

Before exporting the harness, save changes to the model.

save_system(model)

Export the Test Harness to a Separate Model

Export the test harness using sltest.harness.export. The exported model name is
ControllerTestModel.

sltest.harness.export([model '/shift controller'], 'ControllerHarness2',
"Name', 'ControllerTestModel')

clear('model")

clear('properties')
close system('sltestTestSequenceExample',0)

Delete Test Harnesses Programmatically

This example shows how to delete test harnesses programmatically. Deleting using the programmatic
interface can be useful when your model has multiple test harnesses at different hierarchy levels.
This example demonstrates how to create four test harnesses and then, delete them.

1. Open the model

open_system('sltestCar');

Simulink® Test™ model sltestCar

brake
impaller forque
b Ti
Me
| throttle
Engine
Passing_Maneuwve
Brake > e ! !!
= !
L[]
gear
— = -
. Thrattle — > i_i_‘i " Tout »
L, throttle P Mot output torque
Inputs shifi_logic transmission ishicle
transmiseion speed

wehicle speed

Copyright 1997-201% The MathWaorks, Inc.

2. Create two harnesses for the transmission subsystem, and two harnesses for the
transmission ratio subsystem.

2-32

Manage Test Harnesses

sltest.harness.
sltest.harness.
sltest.harness.
sltest.harness.

create('sltestCar/transmission');
create('sltestCar/transmission');
create('sltestCar/transmission/transmission ratio');
create('sltestCar/transmission/transmission ratio');

3. Find the harnesses in the model.

test harness list

test harness list

sltest.harness.find('sltestCar"')

1x5 struct array with fields:

model
name

description

type

ownerHandle

ownerFullPath

ownerType
isOpen

canBeOpened

lockMode

verificationMode
saveExternally
rebuildOnOpen
rebuildModelData
postRebuildCallback

graphical
origSrc
origSink

synchronizationMode
existingBuildFolder

4. Delete the harnesses.

for k = 1:length(test harness list)
sltest.harness.delete(test harness list(k).ownerFullPath,...
test harness list(k).name)

end

close system('sltestCar',0);

Move and Clone Test Harnesses

Simulink Test gives you the ability to move/clone test harnesses from a source owner to a destination
owner without having to compile the model. You can move or clone:

* Subsystem harnesses across subsystems. The destination subsystem could also be in a different

model.

» Harnesses for library components across libraries.

* Subsystem Reference block harnesses and other Subsystem Reference block harnesses.

* Subsystem Reference block harnesses and Subsystem model harnesses.

2-33

2 Test Harness

To move or clone harnesses, right-click the Simulink canvas and select Test Harness > Manage
Test Harnesses. The Manage Test Harness dialog box opens and lists the test harnesses associated
with the subsystem/block specified in Filter by harness owner. Click Actions to access the Move
and Clone options.

-
Manage Test Harnesses for 'sltestHeatpumpExample’ ﬁ

View and manage test harnesses in: sltestHeatpumpExample

Filter by harness owner: [sltestHeatpumpExam;ﬂafCﬂntrmler *]
1 Name 1 Owner Path
sltestHeatpumpExample _Harness1 JController

Select All

Properties

Move
Clone

2-34

Manage Test Harnesses

r' Move Harness ﬁ-‘
Destination Path:

Destination Path:
4 sltestHeatpumpExample
Plant
4 Controller
controller_chart

MNew Harness Name: sltestHeatpumpExample_Harness1

[OK] [Cancel

L "

Select the destination path and name your test harness.

See Also

Functions

sltest.harness.clone | sltest.harness.create|sltest.harness.delete |
sltest.harness.export|sltest.harness.find | sltest.harness.load |
sltest.harness.move | sltest.harness.open

2-35

2 Test Harness

Customize Test Harnesses

In this section...

“Callback Function Definition and Harness Information” on page 2-36
“How to Display Harness Information struct Contents” on page 2-38
“Customize a Test Harness to Create Mixed Source Types” on page 2-38
“Test Harness Callback Example” on page 2-40

You can customize a test harness by using a function that runs after creating or rebuilding the test
harness. In the function, script the commands to customize your test harness. For example, the
function can:

Connect custom source or sink blocks.

Add a plant subsystem for closed-loop testing.
Change the configuration set.

Enable signal logging.

Change the simulation stop time.

The test harness customization function runs as a test harness post-create callback or post-rebuild
callback. To customize a test harness using a callback function:

1
2

Create the callback function.

In the function, use the Simulink programmatic interface to script the commands to customize
the test harness. For more information, see the functions listed in “Programmatic Model Editing”
(Simulink).

Specify the function as the post-create or post-rebuild callback:

¢ For a new test harness,

* Ifyou are using the Ul, enter the function name in the Post-create callback method or
Post-rebuild callback method in the Advanced Properties of the harness creation
dialog box.

* Ifyou are using sltest.harness.create, specify the function as the
PostCreateCallback or PostRebuildCallback value.

* For an existing test harness,
* Ifyou are using the Ul, enter the function name in Post-rebuild callback method in the
harness properties dialog box.

* Ifyou are using sltest.harness.set, specify the function as the
PostRebuildCallback value.

For more information on test harness properties, see “Create Test Harnesses and Select
Properties” on page 2-12.

Callback Function Definition and Harness Information

The callback function declaration is

function myfun(x)

2-36

Customize Test Harnesses

where myfun is the function name and myfun accepts input x. X is a struct of information about the
test harness automatically created when the test harness uses the callback. You can choose the
function and argument names.

For example, define a harness callback function harnessCustomization.m:
function harnessCustomization(harnessInfo)

% Script commands here to customize your test harness.

end

In this example, harnessInfo is the struct name and harnessCustomization is the function
name. When the create or rebuild operation calls harnessCustomization, harnessInfo is
populated with information about the test harness, including handles to the test harness model, main
model, and blocks in the test harness.

For example, using harnessCustomization as a callback for the following test harness:

1 - I Fhi
(27 >] 4P eng Phi Ret
3 > Turm Knob
Signal spec.
Signal spec. Fioll Reference and routing
and routing
HH
([|

populates harnessInfo with handles to three sources, one sink, the main model, harness model,
harness owner, component under test, and conversion subsystems:

harnessInfo =
struct with fields:

MainModel: 2.0001
HarnessModel: 1.1290e+03
Owner: 17.0001
HarnessCUT: 201.0110
DataStoreMemory: []
DataStoreRead:
DataStoreWrite: []
Goto: T[]
From: []
GotoTag: []
SimulinkFunctionCaller: []
SimulinkFunctionStub: []
Sources: [1
Sinks: 1
AssessmentBlock: [
InputConversionSubsystem: 1

.1530e+03 1.1540e+03 1.1550e+03]
.1630e+03

]
.1360e+03

2-37

2 Test Harness

OutputConversionSubsystem: 1.1560e+03
CanvasArea: [215 140 770 260]

Use the struct fields to customize the test harness. For example:

* To add a Constant block named ConstInput to the test harness, get the name of the test harness
model, then use the add block function.

harnessName = get param(harnessInfo.HarnessModel, 'Name');
block = add block('simulink/Sources/Constant',...
[harnessName '/ConstInput']);

* To get the port handles for the component under test, get the 'PortHandles' parameter for
harnessInfo.HarnessCUT.
CUTPorts = get param(harnessInfo.HarnessCUT, 'PortHandles');

* To get the simulation stop time for the test harness, get the 'StopTime' parameter for
harnessInfo.HarnessModel.
st = get param(harnessInfo.HarnessModel, 'StopTime');

* To set a 16 second simulation stop time for the test harness, set the 'StopTime' parameter for
harnessInfo.HarnessModel.

set param(harnessInfo.HarnessModel, 'StopTime', '16"');

How to Display Harness Information struct Contents

To list the harness information for your test harness:
1 In the callback function, add the line

disp(harnessInfo)

Create or rebuild a test harness using the callback function.

When you create or rebuild the test harness, the harness information structure contents are
displayed on the command line.

WN

Customize a Test Harness to Create Mixed Source Types

This example harness callback function connects a Constant block to the third component input of
this example test harness.

i | Fhi M

AP eng Phi Rt > » 1)

¥ Turn Knab) I
Signal spec.

Signal spec. Roll Reference and routing

CHCHC

BN noubng

2-38

Customize Test Harnesses

The function follows the procedure:

Get the harness model name.

Add a Constant block.

Get the port handles for the Constant block.

Get the port handles for the input conversion subsystem.

Get the handles for lines connected to the input conversion subsystem.

Delete the existing Inport block.

Delete the remaining line.

Connect a new line from the Constant block to input 3 of the input conversion subsystem.

cONOOUAWNR

function harnessCustomization(harnessInfo)

% Get harness model name:
harnessName = get param(harnessInfo.HarnessModel, 'Name');

% Add Constant block:
constBlock = add block('simulink/Sources/Constant',...
[harnessName '/ConstInput']);

% Get handles for relevant ports and lines:

constPorts = get param(constBlock, 'PortHandles');

icsPorts = get param(harnessInfo.InputConversionSubsystem,...
'"PortHandles');

icsLineHandles = get param...
(harnessInfo.InputConversionSubsystem, 'LineHandles');

% Delete the existing Inport block and the adjacent line:
delete block(harnessInfo.Sources(3));
delete line(icsLineHandles.Inport(3));

Connect the Constant block to the input

conversion subsystem:
add_line(harnessInfo.HarnessModel, constPorts.Outport,...
icsPorts.Inport(3), 'autorouting', 'on');

)
©
)

©

end
L1} B | Fhi
1 2} o AP ey Phi Ref i
Conatinput
L Tum Enok
Slignal spec

- and reuting
Signal spec Rall Reference

and routing

2-39

2 Test Harness

Test Harness Callback Example

This example shows how to use a post-create callback to customize a test harness. The callback
changes one harness source from an Inport block to Constant block and enables signal logging in the
test harness.

The Model

In this example, you create a test harness for the Roll Reference subsystem.

open_system('RollAutopilotMdlRef")

Requirements-based Testing for Controller Development

This model is used to show how to parform requirements-based testing using test harnesses, Test Sequence blocks, and the test manager.
To view the demo, enter sltestRequirements TestingAutopilotDemo in MATLAB(R).

double H_ﬂatling'h’lu-deﬁ-hﬂmrailﬂh Roll Autopilot
(73 Taonm 5 ReEf Authar: The MathWorks, Inc.
HONG Ref Model Version: 1.228
Date: Sat Feb 29 01:48:21 2020
daubla i . double Copyright MathWorks 2017
(2) 1 Fsi Phi Cmd
- double
Fsi
@ double i
double |-
TAS
baalsan Heading Mode =J_| (o] AttitudeContrallerAutopil
L6 J - - # Disp_Cmd
—..l___l phiCmd double
HDG Mode o
double Mode switch
L1} | Di=zp_FB
— double doubla
Surf_Cmd »
@ dauble o B =
——#| Rate_|
o doubla Ll double -
: ' » All Cmd
| Engaged
» boalean | zerm Eng switch
baalean X Baszic Roll Mode
L5)] AP &g Phi Ref
AP Eng double
—F Tum Knob
Turn Knob
Raoll Reference
RollAutopilotMdIRef.slx
Copyright 2018 The MathWaorks Inc.

2-40

Get Path to the Harness Customization Function

cbFile fullfile(matlabroot, 'examples', 'simulinktest', 'main', ...
"harnessSourceLogCustomization.m');

The Customization Function and Test Harness Information

The function harnessSourcelLogCustomization changes the third source block, and enables
signal logging on the component under test inputs and outputs. You can read the function by
entering:

type(cbFile)

The function uses an argument. The argument is a struct listing test harness information. The
information includes handles to blocks in the test harness, including:

Customize Test Harnesses

* Component under test

* Input subsystems

* Sources and sinks

* The harness owner in the main model

For example, harnessInfo.Sources lists the handles to the test harness source blocks.

Create the Customized Test Harness

1. Copy the harness customization function to the temporary working directory.

copyfile(cbFile, tempdir);
cd(tempdir);

2. In the Rol1AutopilotMd1Ref model, right-click the Roll Reference subsystem and select Test
Harness > Create for Roll Reference.

3. In the harness creation dialog box, for Post-create callback method, enter
harnessSourcelLogCustomization.

4. Click OK to create the test harness. The harness shows the signal logging and simulation stop time
specified in the callback function.

You can also use the sltest.harness.create function to create the test harness, specifying the
callback function with the 'PostCreateCallback' name-value pair.

sltest.harness.create('RollAutopilotMdlRef/Roll Reference', ...
'Name', 'LoggingHarness', ...
'PostCreateCallback', 'harnessSourceLogCustomization');

sltest.harness.open('RollAutopilotMdlRef/Roll Reference', 'LoggingHarness');

Ph

¥
r
——

1 (z) > p| 2P eng Phi Ref > 1)
Constinput AF eng H Phi Raf
Tum Knob
N wmn Kno
Signal spec.
Roll Reference and routing
Signal spec.
e and routing

close system('RollAutopilotMdlRef"',0);

See Also
sltest.harness.create | sltest.harness.set

Related Examples

. “Create Test Harnesses and Select Properties” on page 2-12

2-41

2 Test Harness

Create Test Harnesses from Standalone Models

2-42

In this section...

“Test Harness Import Workflow” on page 2-42
“Component Compatibility for Test Harness Import” on page 2-42
“Import a Standalone Model as a Test Harness” on page 2-43

Standalone test models are often used to verify your main model. You can create Simulink Test test
harnesses by importing your standalone test models. Importing standalone models enables
synchronization and management features, allowing you to:

» Iterate on your design, using model and test harness synchronization

* Manage test harnesses, using the UI and programmatic interface

* Clarify ownership of a test harness by a model, subsystem, or library being tested

A common test model passes input signals to a copy of a subsystem or a Model block referencing your
main model. Test models include models created by Simulink Coverage™ and Simulink Design
Verifier™.

Test Harness Import Workflow

Before importing a standalone model as a test harness, determine:

* In the main model, the model or component to associate the test harness with.
* The path to the standalone model.
* The tested component in the standalone model.

For example, this standalone model tests the Controller subsystem. The model passes Inputs
to Controller. Safety Properties verifies the Controller output.

Simulink Test Basic Cruise Control Verification

throt

targot|————————————»{ 2
target

Contraoller

|—D Throttie_Out

Safety Properties

Size-Type

The catpul of Wodel
ulputs the lrotlie value: bised on

Copyright 2006-2017 The MathWorks, Inc.

Component Compatibility for Test Harness Import

When you import a model as a test harness, the component in the main model must be compatible
with the component in the standalone model.

Create Test Harnesses from Standalone Models

Component Compatibility for Test Harness Import

In the main model, if the component is: In the standalone model, the tested
component must be:

A user-defined function block (e.g. an S-Function |The same block type

block)

The top-level model A Model block or a subsystem

A subsystem A subsystem, Model block, or a user-defined
function block

A Subsystem Reference block Subsystem model

A Model block A Model block or a subsystem

You cannot create a test harness by importing:

» Libraries

* Models that have existing test harnesses

* Models with unsaved changes. Save open models before importing

Import a Standalone Model as a Test Harness

This example shows how to import a standalone test model to create a test harness in Simulink Test.

The main model sltestBasicCruiseControl is a cruise control system, with root import and
output blocks.

Simulink Test: Basic Cruise Control

throt %{D
throt
@ ¥ InBus
InBus
target .-"E'@
target
Controller

Copyright 2006-2018 The MathWarks, Inc.

The test model contains a Signal Builder block driving a copy of the Controller subsystem, with a
subsystem verifying that the throttle output goes to 0 if the brake is applied for three consecutive
time steps.

2-43

2 Test Harness

Shaeti

—1

Actual_spesd
Bwitches_enable
Switches_brake
Switches_sat
Switches_inc

Swilches_dec

Simulink Test Basic Cruise Control Verification

throt

Y

E—

EE—

2-44

Inputs.

Size-Type

InBus

target

throt

Controller

™ Throttle_Out

Safety Properties

Copyright 2006-2018 The MathWorks, Inc.

Create a Test Harness from the Standalone Model

1. In the main model, right-click the Controller subsystem and select Test Harness > Import for

'Controller'.

2. Set the following harness properties:

3.

A test harness is created from the standalone model, owned by the Controller subsystem in the

Name: VerificationSubsystemHarness

Simulink model to import: Click Browse and select
sltestBasicCruiseControlHarnessModel in the MATLAB® examples/simulinktest

directory.

Component under Test in imported model: Controller

Click OK.

main model. Click the badge to preview the test harness.

target

Create Test Harnesses from Standalone Models

throt 1)
throt
@ P InBus
InBus
target %@
target

Crntrallar

VerificatiocnSubsystemHarmess

Copyright 2006-2018
Internal Test Harmess

See Also
sltest.harness.import

Related Examples

. “Test Harness and Model Relationship” on page 2-2
. “Synchronize Changes Between Test Harness and Model” on page 2-46

2-45

2 Test Harness

Synchronize Changes Between Test Harness and Model

2-46

In this section...

“Set Synchronization for a New Test Harness” on page 2-46

“Change Synchronization of an Existing Test Harness” on page 2-48
“Synchronize Configuration Set and Model Workspace Data” on page 2-48
“Check for Unsynchronized Component Differences” on page 2-48
“Rebuild a Test Harness” on page 2-49

“Push Changes from Test Harness to Model” on page 2-49

“Check Component and Push Parameter to Main Model” on page 2-49

A test harness provides an isolated environment to test design changes. You can synchronize changes
from the test harness to the main model, or from the main model to the test harness. Synchronization
includes these model elements:

* The component under test

* Block parameters

* Optionally, the model or test harness configuration set

* Optionally, the model workspace parameters

You do not need to synchronize base workspace data because it is available to both test harness and
main model. Subsystem model test harnesses always sync with their underlying models.

Set Synchronization for a New Test Harness

When creating a test harness, you specify when changes in the test harness are synchronized with
the main model. Synchronization can occur automatically or manually. If you plan to try out different
component designs in the test harness, use manual synchronization to avoid overwriting the
component in the main model. Depending on the type of component under test in your harness, you
can select from several synchronization options, which are combinations of the following actions:

* Synchronize on harness open — When the test harness opens, the test harness components,
configuration set, and parameters synchronize from the model to the test harness. This option is
available for:

* Block diagrams

* Subsystems, including Stateflow charts and MATLAB Function blocks

* For Subsystem Reference blocks, only the block parameters are synced, not the block contents.
* Model reference blocks

* S-function blocks

The Synchronize on harness open option is not available for:

* SIL/PIL harnesses
* Subsystem model harnesses

* Synchronize on harness open and close — When the test harness opens, the test harness
components, configuration set, and parameters synchronize from the model to the test harness.

Synchronize Changes Between Test Harness and Model

When the test harness closes, the same elements synchronize from the harness to the model. This
option is available for:

* Block diagrams

* Subsystems, including Stateflow charts and MATLAB Function blocks

* For Subsystem Reference blocks, only the block parameters are synced, not the block contents.
* Model reference blocks

* S-function blocks

* Subsystem model harnesses

The Synchronize on harness open and close option is not available for:

* Block diagrams
» SIL/PIL harnesses
* Subsystem model harnesses

* Synchronize only during push and rebuild — Synchronizes when you click Push Changes or
Rebuild Harness. Push Changes synchronizes changes from the test harness to the model.
Rebuild Harness synchronizes changes from the model to the test harness. This option is
available for:

* Subsystems, including Stateflow charts and MATLAB Function blocks
* Model reference blocks
* S-function blocks

* Subsystem models, which always synchronize on push and rebuild only.

The Synchronize only during push and rebuild option is not available for:

* Block diagrams
» SIL/PIL harnesses
* Components in libraries
* Synchronize only during rebuild — Synchronizes only when you click Rebuild Harness.
Rebuild Harness synchronizes changes from the model to the test harness. This option is
available for:
* Block diagrams
* Subsystems, including Stateflow charts and MATLAB Function blocks
* Model reference blocks
* S-function blocks
+ SIL/PIL verification mode components

The Synchronize only during rebuild option is not available for:

* Components in libraries

If you use the command line, set the SynchronizationMode property with
sltest.harness.create.

2-47

2 Test Harness

2-48

Note If you create a test harness in SIL or PIL mode for a Model block, the block mode in the test
harness is changed to SIL or PIL, respectively. This mode is not updated to the main model when you
close the test harness.

Maintain SIL or PIL Block Fidelity If you use a software-in-the-loop (SIL) or processor-in-the-loop
(PIL) block in the test harness, consider setting the test harness to rebuild every time it opens.
Regularly rebuilding the test harness ensures that the generated code referenced by the SIL/PIL
block reflects the main model.

Change Synchronization of an Existing Test Harness

To change a test harness synchronization mode:

Close the test harness.
In the main model, click the harness badge on the block or the Simulink canvas.

In the test harness thumbnail preview, click the Harness operations icon and select
Properties.

4 Change the Synchronization Mode in the properties dialog box.

If you use the command line, set the SynchronizationMode property with sltest.harness.set.

Synchronize Configuration Set and Model Workspace Data

To synchronize the configuration set and workspace parameters between the test harness and main
model, select Update Configuration Parameters and Model Workspace data on rebuild in the
harness creation or harness properties dialog box.

Check for Unsynchronized Component Differences

If your test harness does not synchronize changes, you can check for unsynchronized component
differences between the test harness and main model. Checking for unsynchronized differences can
be useful if:

* You are making tentative design changes in the test harness and want to check that the main
model component is not overwritten.

* You have made design changes to the main model and want to check which test harnesses must be
rebuilt.

From the test harness window, select Check Harness to check for differences. If the component
differs, you can push changes from the test harness to the main model, or rebuild the test harness
from the main model. Also see the sltest.harness.check function.

Consider these conditions when checking for unsynchronized differences:

* sltest.harness.check only includes the block diagram, block parameters, and mask
parameters in the comparison between the test harness and main model. Port options, compiled
attributes, hidden parameters, and model reference data logging parameters are not included in
the comparison.

» If the component contains a Simscape™ Solver Configuration block, the check result always shows
that the component differs between the test harness and main model. The Solver Configuration

Synchronize Changes Between Test Harness and Model

block is affected by Simscape blocks outside the component, and therefore always differs between
the test harness and main model.

Rebuild a Test Harness

Rebuild a test harness to reflect the latest state of the main model. In the test harness, select
Rebuild Harness. In addition to updating the component under test and block parameters, this
operation rebuilds harness conversion subsystems. If the test harness does not have conversion
subsystems, rebuilding adds them.

Rebuilding can disconnect signal lines. For example, if signal names changed in the main model,
signal lines in the test harness can be disconnected. If lines are disconnected, reconnect signal lines
to the component under test or conversion subsystems. If you specified to use existing generated
code for a SIL/PIL subsystem using sltest.harness.create or sltest.harness.set, the
harness rebuild uses that code instead of regenerating it.

For more information, see “Create Test Harnesses and Select Properties” on page 2-12 and
sltest.harness.rebuild.

Push Changes from Test Harness to Model

After changing your system in the test harness, you can push changes to the main model. In the test
harness, select Push Changes. This process overwrites the component in the main model.

Check Component and Push Parameter to Main Model

This example shows a basic workflow of updating a parameter in a test harness, checking the
synchronization between the test harness and main model, and pushing the parameter change from
the test harness to the main model.

This example also includes programmatic steps.

Open the model sltestCar. The model includes a transmission shift controller algorithm and
simplified powertrain and vehicle dynamics.

open_system('sltestCar');

2-49

2 Test Harness

Simulink® Test™ model sltestCar

brake
impeller forque
| Ti
M2
| throtile
Engine
Passing_Maneuve
Brake -] !
v — - !! -] Tif—
N 1
o | gear :
. Thraottle — > ii‘ii_!_Toui »
I=l/'- throttle | Mout output torque
Inputs shift_logic transmission ‘ehicle
transmiseion speed

wehicle speed

Copyright 1957-201%9 The MathWarks, Inc.

Update the Mask Parameter in the Test Harness

1. Open the test harness. Click the badge on the shift logic chart and select the
ShiftLogic InportHarness test harness. The test harness is set to synchronize only when you
push to or rebuild from the main model.

sltest.harness.open('sltestCar/shift logic', 'ShiftLogic InportHarness');

¥

vehicle spead

[F=]
h
(]

D,
€D,

¥
¥

Signal spec. shift_logic Signal spec.
and routing and routing

2. Double-click the shift logic subsystem. For Delay before gear change (tick), enter 4. Click
OK.

shiftLogicMask = Simulink.Mask.get('ShiftLogic InportHarness/shift logic');
maskParamValue = shiftLogicMask.Parameters.Value;
shiftLogicMask.Parameters.Value = '4"'; % Set to new parameter value

Check Synchronization between Test Harness and Main Model

On the command line, run the sltest.harness. check function.

[comparison,details] = sltest.harness.check('sltestCar/shift logic',...
'ShiftLogic InportHarness');

2-50

Synchronize Changes Between Test Harness and Model

The results show that the component under test is different in the test harness due to the updated
mask parameter.

comparison

comparison =
logical

0
details

details =
struct with fields:
overall: 0
contents: 1
reason: 'The contents of harnessed component and the contents of the component in the main

Update the Parameter to the Main Model

1. In the test harness, open the Test Manager. On the Apps tab, under Model Verification, Validation,
and Test, click Simulink Test. Then, on the Tests tab, click Simulink Test Manager.

2. In the main model, double-click the shift logic subsystem. The parameter value is updated.
sltest.harness.push('sltestCar/shift logic', 'ShiftLogic InportHarness")
Re-check Synchronization between Test Harness and Main Model

On the command line, update the main model and test harness. Then, run the
sltest.harness. check function.

set param('sltestCar','SimulationCommand', 'update"');
set _param('ShiftLogic InportHarness', 'SimulationCommand', 'update');

[comparison,details] = sltest.harness.check('sltestCar/shift logic',...
'ShiftLogic InportHarness');

The results show that the component under test is the same between the test harness and the main
model.

comparison

comparison =
logical

1

details

2-51

2 Test Harness

details =
struct with fields:
overall: 1

contents: 1
reason: 'The checksum of the harnessed component and the component in the main model are s:

close system('sltestCar',0);

See Also
sltest.harness.check | sltest.harness.push|sltest.harness.rebuild

Related Examples
. “SIL Verification for a Subsystem” on page 5-2

2-52

Test Library Blocks

Test Library Blocks

In this section...

“Library Testing Workflow” on page 2-53
“Library and Linked Subsystem Test Harnesses” on page 2-53
“Edit Library Block from a Test Harness” on page 2-54

“Testing a Library and a Linked Block” on page 2-54

If your model includes instances of blocks from a library, you can test both the source block in the
library, and individual block instances in other models. First, create test harnesses for a library block
to test your design. Once the library block meets your requirements, create test harnesses for linked
blocks and test the subsystem instances. You can move test harnesses from the library to an instance
and an instance to the library.

Library Testing Workflow

This procedure outlines an example workflow for testing library subsystems and linked subsystems.

Create a test case and a test harness for the library subsystem.

Test the library subsystem. If it fails your requirements, revise the design and test again.
Lock the library when your tests pass.

In your model, create a linked subsystem and retain the library test harnesses.

a A W N R

Compare the output of the linked instance to that of the library block using an equivalence test
case.

Create additional test cases and test harnesses for the linked instance.

7 Promote a test harness from the linked subsystem to the library if you want to include the test
harness with future linked subsystems.

Library and Linked Subsystem Test Harnesses
A test harness for a library subsystem has specific properties:

» Libraries do not compile, so a test harness for a library subsystem does not use compiled
attributes such as data type or sample rate.

* A test harness for a library subsystem does not generate conversion subsystems for the block
inputs and outputs.

* A library subsystem test harness does not use push or rebuild operations, because libraries do not
use configuration parameters.

When you create a linked subsystem from a library subsystem, test harnesses copy to the linked
instance. If you do not need the test harnesses, you can delete them. For instructions on deleting all
test harnesses from a model, see “Manage Test Harnesses” on page 2-26.

When you create a test harness for a linked subsystem, the harness associates with the linked
subsystem, not the library subsystem. You can move a test harness from a linked subsystem to the
library subsystem. For example, this linked subsystem Controller has three test harnesses. To
move the Requirements Tests1 test harness to the library:

2-53

2 Test Harness

2-54

1 Click the harness badge on the linked subsystem.

Click the Harness Operations & icon.

Tset —— ¥ control_in
In1
control_out Troom
Troom_in Toutside
& i In2
Reaui - qumimllnr D] ant
Lvirements_Tests
q - shtestHea. Harness1 sltestHea. Harness2
i

| Harness Dpe.raﬁcuns |

Test Harnesses

3 Select Move to Library.
4 A dialog box informs you that moving the harness removes it from the linked subsystem.
5 After confirmation, the harness appears with the library subsystem.

Edit Library Block from a Test Harness

You can apply an iterative design and test workflow to libraries by testing a library block in a test
harness and updating the component under test. Changes to the component under test synchronize to
the library when you close the test harness.

If you have a library block whose design is complete, set your test harnesses to prevent changes to
the component under test. You can set this property when you create the test harness or after
harness creation. See “Create Test Harnesses and Select Properties” on page 2-12.

Testing a Library and a Linked Block
Verify a reusable subsystem in a library and in a larger system.

This example demonstrates a test case that confirms a library block meets a short set of
requirements. After testing the library block, you execute a baseline test of a linked block and
capture the baseline results. You then promote the baseline test harness to the library.

The library block controls a simple heat pump system by supplying on/off signals to a fan and
compressor, and specifying the heat pump mode (heating or cooling).

Open the Test File

Enter the following to store paths and filenames for the example, and to open the test file. The test
file contains a test case for the library block and for the block instance in a closed-loop model.

Test Library Blocks

filePath = fullfile(matlabroot, 'toolbox', 'simulinktest', 'simulinktestdemos');
testFile = 'sltestHeatpumpLibraryTests.mldatx';

library = 'sltestHeatpumpLibraryExample"';

system = 'sltestHeatpumpLibraryLinkExample';
open(fullfile(filePath,testFile));

|=| Requirements Scenarios » [H}, Start Page x
|Fi|tertests by name or tags, e.g. tags: test . .
< stestHeatpumpLioraryTests Requirements Scenarios v e
~ [Library Block Test sltestHeatpumplLibraryTests » Library Block Test » Requirements Scenarios
[Z Requirements Scenarios Simulation Test
= [Instance Test Select releases for simulation: | Current +

@ e e Create Test Case from External File

r TAGS

» DESCRIPTION

+ REQUIREMENTS

+ SYSTEM UNDER TEST*

Model: | sltestHeatpumpLibraryExample mpAC
+ TEST HARNESS*
Hamess: | Reguirements_Tests |" (ol |

» SIMULATION SETTINGS OVERRIDES

Expand the Library Block Test test suite, and highlight the Requirements Scenarios test case in
the test browser. Expand the Test Harness section of System Under Test, and click the arrow to
open the test harness for the library block.

open_system(library);
sltest.harness.open([library '/Controller'],'Requirements Tests');

Test

LY

conirol_out }

LY.

Troom_in

Controller

2-55

2 Test Harness

2-56

1 Taet P Test
2 control_out
contral | out
3 _ I+ Troom_in
Troom_in
Controller | contral_out

p{Test 2
Joe| Trooam_in

The Test Sequence block sets three scenarios for the controller:

* The controller at idle
* The controller activating the fan only
* The controller activating the heating and cooling system

The Test Assessment block in the test harness checks the signals for each scenario. Since the test
inputs and assessments are contained in the test harness, and no baseline data is being captured, the

test case is a simulation test.
Run the Requirements-Based Test

In the test manager, run the Requirements Scenarios test case. The verify statement results show
that the control out signals pass.

Test Library Blocks

Results and Ariifacts

=l 17 MW Test Assessment/.../Check_fan:verify(a)

|E| Requirements Scenarios x MStanF’age b 4

[Visualize

X

» Results: 2017-Jan-11 17:40:51 1@ Fe
~ |=| Requirements Scenarios]
» [lzl Verify Statements]
Test Assessment/.../Ch... @
+| Test Assessment/.../Ch... @
Test Assessment/.../Ch... @
Test Assessment/.../Ch... @

~ i Sim Output (shtestHeatpumplLik
control_out.fan_cmd s Pass

control_out.pump_...

control out.pump dirs 7

Untested

20 40 80

Open the Linked Block Model

80 100

120

140 160

240 260 280 300

In the test manager, expand Instance Test. Highlight the Baseline Test test case. In the System

Under Test, click the arrow next to the Model field to open the model.

sltest.harness.close([library '/Controller'],

open_system(system);
sim(system);

T

conirol_out

P Troom_in

'Requirements Tests');

contral_in

Toutside

Troom

Plant

e

Copyright 1990-2014 The MathWorks, Inc.

The controller is a linked block to the library. It is associated with a test harness Baseline Test that
compares simulation results of the instance against baseline data. In your workflow, successful
baseline testing for an instances of a library block can show that the linked block simulates correctly

2-57

2 Test Harness

in the containing model. The test harness supplies a sine wave temperature and captures the
controller output.

Run the Baseline Test and Observe Results

In the test manager, click Run to execute the test. The results show that the baseline test passes.

4 Results : 2015-Sep-25 10:25:53 1@
4 |=| Baseline Test

4 [z Baseline Criteria Result

2-58

]
(-]
) control_out.fan_cmd]
(O control_out.pump_c...]

]

@ control_out pump_dir

4[] Sim Output (shtestHeatpumpLibr o8

Results and Artifacts |=| Baseline Test [, start Page je5| Comparison

i
=

M control_out. pump_dir (Baseline) M control_out.pump_dir (Compare To)

control_out.fan_cmd s

control_out.pump_... s -1.0

control_out.pump._dir 0 300 600 800 1200 1500 1800 2100 2400 2700 3000 3300 3600

room_temp — W Difference W Tolerance

a 300 600 000 1200 1500 1800 2100 2400 2700 3000 3300 3600

Move the Test Harness to the Library

If you develop a particularly useful test for a linked block, you can promote the test harness from a
linked block to the source library block. The test harness then copies to all future instances of the
library block.

Move the Baseline_controller_tests test harness to the library block:

1. In the sltestHeatpumpLibraryLinkExample model, click the harness badge and hover over the
Baseline_controller_tests test harness.

2. Click the harness operations icon

o

3. Select Move to Library. A dialog informs you that the operation deletes the test harness from the
instance and adds it to the library. Click Yes.

4. The test harness moves to the Controller library block.

Test Library Blocks

Controller /%,

| Baseline_controller_tests| Requirements Tests

= 7| kol

=

close system(library,0);

close system(system,0);
clear(filePath,library,system, testFile);
sltest.testmanager.clear;
sltest.testmanager.clearResults;

See Also
“Create Test Harnesses and Select Properties” on page 2-12

2-59

Test Sequences and Assessments

* “Test Sequence Basics” on page 3-2

» “Use Stateflow Chart for Test Harness Inputs and Scheduling” on page 3-8
* “Assess Simulation and Compare Output Data” on page 3-11

* “Assess Model Simulation Using verify Statements” on page 3-15

» “Verify Multiple Conditions at a Time” on page 3-20

* “Assess a Model by Using When Decomposition” on page 3-21

* “Test Sequence Editor” on page 3-26

* “Actions and Transitions” on page 3-31

» “Signal Generation Functions” on page 3-38

* “Programmatically Create a Test Sequence” on page 3-43

+ “Test Sequence and Assessment Syntax” on page 3-47

* “Debug a Test Sequence” on page 3-54

» “Test Downshift Points of a Transmission Controller” on page 3-57

+ “Examine Model Verification Results by Using Simulation Data Inspector” on page 3-62
* “Assess Temporal Logic by Using Temporal Assessments” on page 3-66

* “Logical and Temporal Assessment Syntax” on page 3-71

3 st Sequences and Assessments

Test Sequence Basics

3-2

In this section...

“Test Sequence Hierarchy” on page 3-2
“Transition Types” on page 3-2
“Create a Basic Test Sequence” on page 3-3

“Create Basic Test Assessments” on page 3-5

A test sequence consists of test steps arranged in a hierarchy. You can use a test sequence to define
test inputs and to define how a test will progress in response to the simulation. A test step contains
actions that execute at the beginning of the step. A test step can contain transitions that define when
the step stops executing, and which test step executes next. Actions and transitions use MATLAB as
the action language. You create test sequences by using the Test Sequence block and the Test
Sequence Editor on page 3-26. See “Use Stateflow Chart for Test Harness Inputs and Scheduling”

on page 3-8.

Test Sequence Hierarchy

Test sequences defined in Test Sequence blocks can have parent steps and substeps. Substeps can
activate only if the parent step is active. A group of steps in the same hierarchy level shares a
common transition type. When you create a test step, the step becomes a transition option for other
steps in the same group.

Transition Types

Test sequences defined in Test Sequence blocks transition from one step to another in two ways:

» Standard transition: You can define a sequence of actions that react to simulation conditions
using a standard transition sequence. Standard transition sequences start with the first step and
progress according to transition conditions and next steps.

This test sequence sets the value of Boolean outputs RedButtonIn and GreenButtonIn, with
transitions happening after each step has been active for 1 sec.

Test Sequence Basics

Symbols
Input
1. speed
2 | throttle
3 [gear
Qutput
Local
Constant

Parameter

Data Store Memory

Step Transition Next Step
PressNeitherButton 1. after(1,sec) PressBothButtons v

RedButtonIN = false;
GreenButtonIN = false;

PressBothButtons 1. after(1,sec) PressRedButton v

RedButtonIN = true;
GreenButtonIMN = true;

PressRedButton 1. after(1,sec) PressGreenButton v

RedButtonIN = true;
GreenButtonIN = false;

PressGreenButton 1. after(1,sec) EndTest A\

RedButtonIN = false;
GreenButtonIN = true;

EndTest

When decomposition: When decomposition sequences are analogous to switch statements in
programming. Your sequence can act based on specific conditions occurring in your model. In a
When decomposition sequence, steps activate based on a condition that you define after the step
name. Transitions are not used between steps.

This When decomposition contains three verify statements. Each verify statement is active
when the signal gear is equal to a different value. For more information, see “Assess a Model by
Using When Decomposition” on page 3-21.

Step Transition Next Step
B Assessments

Checklst when gear == 1
verify(speed < 45)

Y ¢ Check2nd when gear == 2
- verify(speed < 75)

Check3rd when gear == 3
verify(speed < 105)

Else

Create a Basic Test Sequence

In this example, you use a Test Sequence block to create a simple test sequence for a transmission
shift logic controller.

3-3

3 Test Sequences and Assessments

3-4

Symbols

Input
1

gear

Output

1

2

speed
throttle

6

Open the model. At the command line, enter

openExample('simulinktest/TransmissionDownshiftTestSequenceExample')

Right-click the shift controller subsystem and select Test Harness > Create for
‘shift_controller’.

In the Create Test Harness dialog box, under Sources and Sinks:

* Under Sources and Sinks, select Test Sequence from the source drop-down menu.
* Under Sources and Sinks, select Add separate assessment block.

* Select Open harness after creation.

Click OK. The test harness for the shift controller subsystem opens.

Double-click the Test Sequence block. The Test Sequence Editor opens.

L} Step Transition Next Step Description
Run

%% Initialize data outputs.
speed = 0;
throttle = 0;

Create the test sequence.
a Rename the first step Accelerate and add the step actions:
speed = 10*ramp(et);
throttle = 100;
b Right-click the Accelerate step and select Add step after. Rename this step Stop, and
add the step actions:
throttle = 0;
speed = 0;

¢ Enter the transition condition for the Accelerate step. In this example, Accelerate
transitions to Stop when the system is in fourth gear for 2 seconds. In the Transition
column, enter:

duration(gear == 4) >= Limit

In the Next Step column, select Stop.

d Add a constant to define Limit. In the Symbols pane, hover over Constant and click the
add data button. Enter Limit for the constant name.

e Hover over Limit and click the edit button. In the Constant value field, enter 2. Click OK.

Test Sequence Basics

Symbols Step A
L Accelerate
1 | gear
throttle = 100;
Output
1| speed Stop
2. [throttle throttle = 0;
speed = 0;
Local
Constant
Lirnit
Parameter

Data Store Memory

Create Basic Test Assessments

1

Symbols
Input
1. speed
2. | throttle
3.l gear
Output
Local
Constant

Parameter

Data Store Memory

5

Transition Next Step
1. duration(gear == 4) == Limit Stop v

speed = 10*ramp(et);

Continuing the example, in the test harness, double-click the Test Assessment block to open the
editor. The editor displays a When decomposition sequence.

Rename the first step Assessments.

Add two steps to Assessments. Right-click the Assessments step and select Add sub-step. Do
this a second time. There should be four steps under Assessments.

Enter the names and actions for the four substeps.

Checklst when gear ==
verify(speed < 45)

Check2nd when gear
verify(speed < 75)

Check3rd when gear ==
verify(speed < 105)

Else
Step
B Assessments
Checklst when gear == 1
verify(speed < 45)
Y i Check2nd when gear == 2

verify(speed < 75)

Check3rd when gear == 3
verify(speed < 105)

Else

1

Transition

Next Step

The fourth step Else has no actions. Else handles simulation conditions outside of the
preceding when conditions.

Add a scope to the harness and connect the speed, throttle, and gear signals to the scope.

3-5

3 Test Sequences and Assessments

|- =

1 "1 wehicle v H

[oear_S] o speed . w< [gear_S)
Signal spec. shift_controller Signal spec.
and routing and routing

y¥yvy

speed_A >

throttle_A >

gear_A >

¥

h 4

1
2
3

¥

Test Assessment Block

6 Set the model simulation time to 15 seconds and simulate the test harness. View the signal data
by opening the scope.

fourth

third

second

first

Mone

7 View the results of the verify statements in the Simulation Data Inspector.

3-6

Test Sequence Basics

W Test Assessment Blockl../Checklstverify(speed = 45) W Test Assessment Block/../Check2nd.verify(speed = 73)
Fail Fail
Pass i Pass
Untested e . . Untested
o 2 4 6 8 10 12 14 0 2 4 3 8 10 12 14

m Test Assessment Blockl. ICheck3rd verify(speed < 105)

Fail Fail

Pass Pass

Untested phikbbbbdbbbMUUUULULULUULUOL WAL Untested
0 H 4 6 8 n 1z u 0 z 4 6 8 n 1= 1

See Also
Test Sequence

More About

. “Test Sequence Editor” on page 3-26

. “Test Sequence and Assessment Syntax” on page 3-47

. “Assess a Model by Using When Decomposition” on page 3-21

. “Use Stateflow Chart for Test Harness Inputs and Scheduling” on page 3-8

3 Test Sequences and Assessments

Use Stateflow Chart for Test Harness Inputs and Scheduling

3-8

In this section...

“Use a Stateflow Chart for Test Harness Scheduling” on page 3-8
“Use a Stateflow Chart as a Test Harness Source” on page 3-9

“n

on page 3-9

Use a Stateflow Chart for Test Harness Scheduling

You can define test harness scheduling using a Test Sequence block, a MATLAB Function block, or a
Stateflow chart. If you use a Stateflow chart as a scheduler, you can use Stateflow features that are
not available with either the Test Sequence block or MATLAB Function block. You can define more
complicated scheduling by using Stateflow variants, graphical functions, super transitions, and super
steps. For example, with Stateflow variants, you can specify multiple test scenarios in a single test
harness. If you do not need to test multiple test scenarios or use complicated sequence logic, use the
Test Sequence block, which has simpler syntax for test scheduling.

Note You must have a Stateflow license to use a chart for test harness inputs or scheduling.

To use a Stateflow chart as a test harness test scheduler, the model or subsystem under test must
have at least one function call signal.

When setting up a test harness from a model, the steps for using a chart as the scheduler are:

1 In a model or subsystem, right-click and select Test Harness > Create for Model or Create for
<subsystem>, respectively.

* For a model, in the Create a Test Harness dialog box, set Add scheduler for function-calls
and rates to Chart.

* For a subsystem, in the Create a Test Harness dialog box, set Generate function call
signals to Chart.

A chart named Simulink Function scheduler is added to the test harness.

Use Stateflow Chart for Test Harness Inputs and Scheduling

outt > (1)
<>

(1} P P In1

Signal spec. 2
and routing N 4

Signal spec.
and routing

send_fcn

Simulink Function scheduler

2 Open the Stateflow chart and define the test sequence using Stateflow states, transitions and
other objects. The Stateflow states serve the same purpose as the sequence steps in a Test
Sequence block. The transitions define the criteria for moving from one state to another.

To programmatically specify a Stateflow chart as a scheduler, set the SchedulerBlock property of
sltest.harness.create to Chart.

Use a Stateflow Chart as a Test Harness Source

When creating a test harness from a model, the steps for using a chart as the test harness source are:

1 In a model or subsystem, right-click and select Test Harness > Create for Model or Create for
<subsystem>, respectively.

2 In the Create Test Harness dialog box, in the Sources and Sinks section, select Chart instead
of Inport.

A chart is added to the test harness. For example,

[Out1] 1 1 [Out1]

Chart Signal spec. - Signal spec.
and routing and routing

3 Open the Stateflow chart and define the test harness sources using Stateflow logic.

To programmatically specify a Stateflow chart as a source, set the Source property of
sltest.harness.create to Chart.

3-9

3 Test Sequences and Assessments

3-10

See Also
Function Caller | Test Sequence | sltest.harness.create

More About

“Chart Programming” (Stateflow)

“Actions and Transitions” on page 3-31

“Create Test Harnesses and Select Properties” on page 2-12
“Test Sequence Basics” on page 3-2

“Test Sequence Editor” on page 3-26

Assess Simulation and Compare Output Data

Assess Simulation and Compare Output Data

In this section...

“Overview” on page 3-11

“Compare Simulation Data to Baseline Data or Another Simulation” on page 3-11
“Post-Process Results With a Custom Script” on page 3-12

“Run-Time Assessments” on page 3-12

“Logical and Temporal Assessments” on page 3-14

Overview

Functional testing requires assessing simulation behavior and comparing simulation output to
expected output. For example, you can:

* Analyze signal behavior in a time interval after an event.

* Compare two variables during simulation.

» Compare timeseries data to a baseline.

* Find peaks in timeseries data, and compare the peaks to a pattern.

This topic provides an overview to help you author assessments for your particular application. In the
topic, you can find links to more detailed examples of each assessment.

You can include assessments in a test case, a model, or a test harness.
* In a test case, you can:

* Compare simulation output to baseline data.
* Compare the output of two simulations.
* Post-process simulation output using a custom script.
* Assess temporal properties using logical and temporal assessments.
* In a test harness or model, you can:
» Verify logical conditions in run-time using a verify statement, which returns a pass, fail, or
untested result for each time step.
* Use assert statements to stop simulation on a failure.

* Use blocks from the Model Verification or Simulink Design Verifier library.

Compare Simulation Data to Baseline Data or Another Simulation

Baseline criteria are tolerances for simulation data compared to baseline data. Equivalence criteria
are tolerances for two sets of simulation data, each from a different simulation. You can set tolerances
for numeric, enumerated, or logical data.

Set a numeric tolerance using absolute or relative tolerances. Set time tolerances using leading and

lagging tolerances. For numeric data, you can specify absolute tolerance, relative tolerance, leading
tolerance, or lagging tolerance. For enumerated or logical data, you can specify leading or lagging

3-11

3 Test Sequences and Assessments

3-12

tolerance. Results outside the tolerances fail. For more information, see “Set Signal Tolerances” on
page 6-108.

Specify the baseline data and tolerances in the Test Manager Baseline Criteria or Equivalence
Criteria section. Results appear in the Results and Artifacts pane. The comparison plot displays
the data and differences.

This graphic shows an example of baseline criteria. The baseline criteria sets a relative tolerance for
signals output torque and vehicle speed.

1

- BrakeThrottleBaseline3.mat
output tarque 0

vehicle speed 0

Post-Process Results With a Custom Script

You can analyze simulation data using specialized functions by using a custom criteria script. For
example, you could find peaks in timeseries data using Curve Fitting Toolbox™ functions. A custom
criteria script is MATLAB code that runs after the simulation. Custom criteria scripts use the
MATLAB Unit Test framework.

Write a custom criteria script in the Test Manager Custom Criteria section of the test case. Custom
criteria results appear in the Results and Artifacts pane. Results are shown for individual MATLAB
Unit Test qualifications. For more information, see “Process Test Results with Custom Scripts” on
page 6-125.

This simple test case custom criteria verifies that the value of slope is greater than 0.

% A simple custom criteria
test.verifyGreaterThan(slope,0, 'slope must be greater than 0')

Run-Time Assessments

verify Statements

For general run-time assessments, use verify statements. A verify statement evaluates a logical
expression and returns a pass, fail, or untested result for each simulation time step. verify
statements can include temporal and conditional syntax. A failure does not stop simulation.

Enter verify statements in a Test Assessment or Test Sequence block, using the Test Sequence
Editor. You can use verify statements with or without a test case in the Test Manager. Without a test
case, results appear in the Simulation Data Inspector. With a test case, results appear in the Test
Manager.

For information on using verify statements in your model, see “Assess Model Simulation Using
verify Statements” on page 3-15.

Assess Simulation and Compare Output Data

assert Statements

You can use assert statements in a Test Assessment or Test Sequence block to stop executing an
invalid test. assert evaluates a logical argument, but unlike verify, assert stops simulation.
Failures appear as simulation errors. To make results easier to interpret, add an optional message.

For example, if a component under test outputs two signals h and k, and the test requires h and k to
initialize to @, use assert to stop the test if the signals do not initialize. This assert statement

returns a message 'Signals must initialize to 0' if the logical condition h == 0 && k ==
0 fails.
Step Transition Hext Step

Initizlize Check
assert(h == 0 && k == 0,"5ignals must initialize to 0",

step_T 1. after(1,sec) step 2 ¥
test_output = true;

Assessments for Real-Time Testing

If you are using a real-time test case, or if you want to reuse a desktop simulation test case on a real-
time target, use verify statements. verify statements are built into the real-time application, and
run on the real-time target. See “Assess Model Simulation Using verify Statements” on page 3-15.

Model Verification Blocks

Use blocks from the Simulink Model Verification library or the Simulink Design Verifier library to
assess signals in your model or test harness. pass, fail, or untested results from each block
appear in the Test Manager. For more information, see “Examine Model Verification Results by Using
Simulation Data Inspector” on page 3-62.

Examples of Run-Time Assessments
This example test harness includes:

* Averify statement in the Test Assessment block, verifying that signalC >= 5.
* An Assertion block verifying that throttle >= 0.

1

2

> brake

l (- - HU_.
4 .

|—b throttle: Signal spac.

b signal spec. and routing
d row

wehicle

Test Sequence block Component under Test

B—’ 1 Test Assessment block

: > > 2 containing verify statements,
= g verifyisignalc »= 5)
3 eg verify(sign =

E}—»E Assertion black

3-13

3 Test Sequences and Assessments

3-14

Logical and Temporal Assessments

Logical and temporal assessments evaluate temporal properties such as model timing and event
ordering over logged data. Use temporal assessments for additional system verification after the
simulation is complete. Temporal assessments are associated with test cases in the Test Manager.
Author temporal assessments by using the Logical and Temporal Assessments Editor. See “Assess
Temporal Logic by Using Temporal Assessments” on page 3-66 for more information.

Temporal assessment evaluation results appear in the Results and Artifacts pane. Use the
Expression Tree to investigate results in detail. If you have a Simulink Requirements license, you can
establish traceability between requirements and temporal assessments by creating requirement links.
See “Link to Requirements” on page 1-2 for more information.

See Also

Related Examples
. “Compare Model Output To Baseline Data” on page 6-7
. “Test Two Simulations for Equivalence”

Assess Model Simulation Using verify Statements

Assess Model Simulation Using verify Statements

You can verify model simulation by including a Test Assessment block in your model or test harness,
and authoring verify statements in the Test Assessment block. verify statements return pass,
fail, or untested results for both the overall simulation and individual time steps. Results appear
in the Test Manager.

Activate verify Statements in the Test Assessment Block

The Test Assessment contains a When decomposition sequence. The When decomposition sequence
helps you clearly define the simulation condition that activates each verify statement:

1 [f your model uses a Test Sequence block source, consider activating each verify statement
using the active Test Sequence block step.

2 Ifyour model does not use a Test Sequence block source, or your test sequence steps do not
correspond with conditions to verify, activate each verify statement using a signal condition.

Activate verify Statements with Test Sequence Steps

Connect the Test Sequence and Test Assessment block with the active step signal from the Test
Sequence block. Activate each verify statement with the active step.

For example, this test harness contains a Test Sequence and Test Assessment block. The blocks are
connected by the Active Step signal.

RedButtonlh RiedButtonUT

[RedButtonOUT_S]

1 [RedButtonOUT_5]
2
GraenBultonDUT_5] 3

Signal spec. Ll GreenButtoniN.~ GreenButtonOUT <{GreenBullonOUT 5]
and roufing
Test Sequance Signal spac
RajectPrassing BothButtons and rauting
Active_Stap
RedButtonih_A
GreanButtaniMN_A 1
RedButtonOUT_A& 2
GreenSulionOUT A 3

Tast Assessment Block

The Test Assessment block contains a When decomposition sequence with four substeps. Each
contains a verify statement and is activated with a different Test Sequence block step.

3-15

3 Test Sequences and Assessments

Symbols
Input

Step Transition
PressNeitherButton

1. after(1,sec)
1.) RedButionOUT
2. () GreenButionOUT RedButtonIN = false;
GreenButtonIN = false;

Output

1.) RedButtaniN i PressBothButtons +. after(1,sec)
=B EEnEai L RedButtonIN = true;
3. [) TSActiveStepQUT GreenButtonIN = true;
Leead PressRedButton 1. after(1,sec)
Constant
RedButtonIN = true;
Parameter GreenButtonIN = false;
Data Store Memory
PressGreenButton 1. after(1,sec)

RedButtonIN = false;
GreenButtonIN = true;

EndTest

Next Step

PressBothButtons

PressRedButton

PressGreenButton

EndTest

Symbols
Input

1. [} RedButtoniN
2. %) GreenButtoniN
2.) RedButtonOUT
4.1 GreenButionOUT
5. . TSActiveStepIN
Output
Local
Constant
Parameter

Data Store Memory

Step
B Assessments

VerifyNeither when TSActiveStepIN == TSActiveStepEnum.PressNeitherButton

verify(RedButtonOUT == false &&..
GreenButtonOUT == false)

VerifyBoth when TSActi IN == TSActiveStepEnum.PressBi 1S

verify(RedButtonOUT == false &&...
GreenButtonOUT == false)

VerifyRed when TSActiveStepIN == TSActi .PressRedButton

verify(RedButtonOUT == true &&...
GreenButtonOUT == false)

VerifyGreen when TSActiveStepIN == TSActiveStepEnum.PressGreenButton

verify(RedButtonOUT == false &&...
GreenButtonOUT == true)

Else

To activate verify statements in a Test Assessment with active steps in a Test Sequence blocks:

1 Create active step data output for the Test Sequence block:

a Select the Test Sequence block.

b Create a new enumerated data output. In the Property Inspector, select Create data to
monitor the active step.

¢ Name the enumeration.

Property Inspector

Test Seguence

Properties Info

Update method | Inherited

Sample Time

Create data to monitor the active step

[4

Enum name:

TSActiveStepEnum

2 Create a data input for the Test Assessment block:

a Open the Test Assessment block.

b In the Symbols sidebar, next to Input, click the Add data icon.

¢ Name the input.

3 In the block diagram, connect the Test Sequence block output to the Test Assessment block

input.

4 Create a When decomposition sequence in the Test Assessment block.

a The Test Assessment block is configured by default with a When decomposition sequence. To

change between a standard sequence and a When decomposition sequence, right-click the

parent step and select When decomposition.

b For each When decomposition step, define when the step is active by using the active step

enumeration data. For example:

VerifyBoth when TSActiveStepIN == TSActiveStepEnum.PressBothButtons

3-16

Assess Model Simulation Using verify Statements

¢ Add verify statements to each assessment step.

Activate verify Statements with Signal Conditions

If your model does not use a Test Sequence block source, or if Test Sequence steps do not correspond
with conditions to verify, use unique signal conditions to activate verify statements. Place verify
statements in a When decomposition sequence, and use conditional statements in the When

conditions.

For example, this test harness uses a Signal Builder block input.

Group 1
RedButtonIN

/“'-.
GreenButtonlM

EE—

Hamess Inputs

RedButtoniM RedButtcnOUT——
RedButtonOUT
GreenButtoniN ~ GreenButtonOUT - > 2 :l
GresnButtonOUT
RejectPressingBothButtons Signal spec

RedButtonlM

GreenButtonlM

RedButtonOUT

GreenButtonOUT

I

1
2
3

Test Aszessment Block

The Test Assessment block contains a When decomposition sequence. Each substep contains a
verify statement. A unique signal condition activates each substep.

3-17

3 Test Sequences and Assessments

Active Group: | | Group 1 v|| [M= = Symbaols Step

0.5

0.5

3-18

| RedButtonIN

Input -
= EI"C Assessments

1. i) RedButtonIN

) GreenButtonIM

2 [:
= ey VerifyNeither when RedButtonIN == false && GreenButtonIN == false
4.[:

) GreenButtonOUT

verify(RedButtonOUT == false &&...
Output GreenButtonQUT == false)

Local

VerifyBoth when RedButtonIN == true && GreenButtonIN == true
Constant

| GreenButtonIN Parameter verify(RedButtonOUT == false &&...

GreenButtonOUT == false)
Data Store Memory

VerityRed when RedButtonIN == true && GreenButtonIN == false
verify(RedButtonOUT == true && GreenButtonOUT == false)

VerifyGreen when RedButtonIN == false && GreenButtonIN == true

ey o) ' ' verify(RedButionOUT == false && GreenButtonOUT == true)

2 GreenButtoniN Else

Author verify Statements

verify statements evaluate logical expressions. You can label results in the Test Manager with
optional arguments.

A verify statement returns a pass, fail, or untested result for each time step and for the overall
simulation. A fail at any time step results in an overall fail. If there are no failing results, a pass
at any time step results in an overall pass. Otherwise, the overall result is untested. Results appear
in the Verify Statements section of the test results. For details on verify syntax and considerations
for using it, see the verify reference page.

Example

In this comparison of two values, the parent step uses verify statements to assess two local
variables x and y during the simulation.
* verify(x >= y) passes overall because it is true for the entire test sequence.

*+ verify(x == y) and verify(x ~= y) fail because they failin step 1 2 and step 1 1,
respectively.

Step

B Comparison_example
YEP K ==y, 'SimulinkTestx_equals '« and v values are %d, %d' ¥y
YEIR (X ~= 1y, 'SimulinkTestx_notEquals ' and v valugs are %d, %d' ¥y
YEIR(H ==y, 'SimulinkTestx_greatherThanEQTo ', and v values are %d, %d' Xy

The Test Manager displays the results:

Assess Model Simulation Using verify Statements

Results and Arfifacts @ | startPage x [E] New TestCase 1 x B Visualize x| 0

la T W SimulinkTestx_notEquals_y

» [E] New Test Case 1
+ (&l Verify Statements

SimulinkTest:x_equals_y

SimulinkTest:x_greatherThanEqTo_y

o 0 0 00

+ SimulinkTest:x_notEquals_y
Pl Sim Qutput (sltestVerify StatementExample: Pass

Name [J SimulinkTestx_notEquals_y
Block Path sltestverifyStatementExamples...
Interp Method zoh

Sync Method union

Untested

See Also
“Test Sequence Editor” on page 3-26 | Test Sequence | Test Assessment | verify

Related Examples
. “Verify Multiple Conditions at a Time” on page 3-20
. “Requirements-Based Testing for Model Development”

3-19

3 Test Sequences and Assessments

Verify Multiple Conditions at a Time

To verify multiple conditions in a single time step, include verify statements inside if statements,
and include multiple if statements in a single test step.

For example, suppose you have a simple two-button utility function that operates as exclusive-or
logic. More than one of the following conditions can be valid at the same time step.

Parallel Input Conditions and Expected Outputs

Condition Expected Output
RedButtonIN == false && GreenButtonIN |RedButtonOUT == false &&
== false GreenButtonOUT == false
GreenButtonIN == false GreenButtonOUT ~= true
RedButtonIN == false RedButtonOUT ~= true
RedButtonIN == true && GreenButtonIN RedButtonOUT == false &&
== true GreenButtonOUT == false
RedButtonIN == true && GreenButtonIN RedButtonOUT == true && GreenButtonOUT
== false == false

RedButtonIN == false && GreenButtonIN |RedButtonOUT == false &&
== true GreenButtonOUT == true

To assess these conditions, this Test Assessment block includes six verify statements in the first test
step, contained in if statements. The test step is active during simulation, and the if statements are
evaluated at each time step.

Transition Next Step

Symbols Step
e Assessments
1. 11 RedButtonlN
2. [) GreenButtonIN if RedButtonIN == false && GreenButtonIN == false
e verify(RedButtonOUT == false && GreenButtonOUT == false)
3. |2 RedButtonOUT end
4. |14 GreenButtonOUT
if GreenButtonIN == false
Output verify(GreenButtonOUT ~= true)

Local
Constant
Parameter

Data Store Memory

See Also

3-20

end

if RedButtonIN == false
verify(RedButtonOUT ~= true)

end

if RedButtonIN == true && GreenButtonIN == true
verify(RedButtonOUT == false &8& GreenButtonOUT == false)

end

if RedButtonIN == true && GreenButtonIN == false
verify(RedButtonOUT == true && GreenButtonOUT == false)

end

if RedButtonIN == false && GreenButtonIN == true
verify(RedButtonOUT == false && GreenButtonOUT == frue)

end

Assess a Model by Using When Decomposition

Assess a Model by Using When Decomposition

This example shows how to use When decomposition in a Test Sequence block to author assessments

in a test harness.

This model implements a simple signal tracker that operates in three modes: 0 (Off), 1 (Slow), and 2

(Quick).

Using When Decomposition to Write Tests

\y

mode T

¥

h

Simple Tracker

Y

%é

To observe the output and error of the signal tracker, simulate the model.

Copyright 2015-2019 The MathWarks, Inc.

TR

3-21

3 st Sequences and Assessments

i = =] &3

File Tools View Simulation Help o

- 4P| - A& FH-

Ready Sample bazed | T=30.000

Open the Test Harness

The SimpleTracker subsystem has a test harness that contains a Test Assessment block.

3-22

Assess a Model by Using When Decomposition

SimpleTrackerHarness
Test harmness for: sltestTestSequenceWhenExample/SimpleTracker

{ v

|

c

=
y¥r¥ry

1 up——p u ¥ .‘:H »—
2
2 = ———] mode & 1
mode &
Test Sequance Signal spec. SimplaTrackar Signal spec.
and routing and routing

[—
=
,,
- 2
3
Copyright 2016-2019 The MathWaorks, Inc. mode

Test Assessment

The Test Assessment block assesses the behavior of the SimpleTracker subsystem by using a When
decomposition test sequence.

Step
B™_ CheckError

DfiMode when mode == uint8(0)
verify(elapsed < 0.5 || vy == 0, 'After 0.5 sec in Off, y must remain 0);

SlowMode when mode == uint8(1)

verify(elapsed < 0.5 || err < 2, "After 0.5 sec in Slow, err must remain < 2');

QuickMode

verify(elapsed < 0.5 || err < 1, "After 0.5 sec in Quick, err must remain < 1');

The test sequence determines the appropriate verify() statements to run based on the value of mode.
The CheckError step has a When decomposition with three substeps:

3-23

3 Test Sequences and Assessments

¢ 0ffMode is active when the value of mode is 0 (Off).
* SlowMode is active when the value of mode is 1 (Slow).
* QuickMode is active for all other values of mode.

Run the Model Assessments

To run the assessments, simulate the test harness. Open the Simulink Data Inspector to inspect the
result of the assessments.

=
File Tools View Simulation Help

- 4P| - A& FH-

Sample bazed T=30.000

3-24

Assess a Model by Using When Decomposition

4\ Simulation Data Inspector - untitled” - m} X
Q ~ 3
Inspect Compare W Test Assessment/.../OffMiode:verify(elapsed < 0.5 || y == 0)
Filter Sgnals Fail
+ Run 1: SimpleTrackerHarness [Current]
. D Test Assessment/_../OModexveriiy(elapsed < 0.5 || y == 0) _
Test p: =05 emr=2)
v Test JQuickModt <05]er=<1) e
%+ Untested
_ 2 4 [] [10 12 1 18 18 20 2 2 2 E 3
m Test /SlowModeverify(elapsed < 0.5 || err = 2)
‘ Fail
®
Untested sl Al g
2 4 [H 10 12 11 16 1z 20 2 24 2 2 E
™ Test Qui y(elapsed < 0.5 || err < 1)
Fail
Fass
Archive
Mntested
Properties 2 4 [& 10 2 14 18 1 20 E 24 2 2 2

Close the test harness and main model.

See Also
Test Assessment | Test Sequence

Related Examples
. “Test Sequence Basics” on page 3-2
. “Test Sequence and Assessment Syntax” on page 3-47

3-25

3 Test Sequences and Assessments

Test Sequence Editor

The Test Sequence Editor enables you to define and modify test sequences for Test Sequence and Test
Assessment blocks. To open the Test Sequence Editor, double-click a Test Sequence or Test
Assessment block.

Define Test Sequences

A test sequence consists of test steps arranged in a hierarchy. Test steps can contain transitions that
define how a test progresses in response to the simulation. Test steps can also have a When
decomposition that uses logic similar to an i f-elseif-else statement. By default:

* New Test Sequence blocks contain two standard transition test steps.
* New Test Assessment blocks contain a When decomposition test step with two sub-steps.

For more information, see “Transition Types” on page 3-2.
To define a test sequence:

Add test steps, as described in “Manage Test Steps” on page 3-26.
In the Step cell, define outputs and assessments.
To add a transition from a test step:

a Point to the Transition cell and click Add transition.

b In the Transition cell, define the conditions for exiting the step.

¢ Inthe Next Step cell, select the next test step from the drop-down list.
4 To define a step with a When decomposition:

a Right-click a test step and select When decomposition. The step displays the icon A

b Add sub-steps, as described in “Manage Test Steps” on page 3-26.

In the Step cell of each sub-step, enter the when operator, followed by a condition. Do not
add a condition to the last sub-step.

Manage Test Steps

In the Test Sequence Editor, you can add and delete test steps to your test sequence. You can also
reorder the test steps and change their position in the hierarchy.

Add and Delete Test Steps
To add a test step, right-click an existing step and select Add step before or Add step after.
To add a test step in a lower hierarchy level, right-click the parent step and select Add sub-step.

To delete a test step, right-click the step and select Delete step. If the test sequence contains only
one test step, you cannot delete it. You can delete its contents by selecting Erase last step content.

Copy and Paste Test Steps

To copy a test step, right-click the area to the left of the step name and select Copy step.
Alternatively, select the test step and use the shortcut Ctrl+C.

3-26

Test Sequence Editor

To cut a test step, right-click the area to the left of the step name and select Cut step. Alternatively,
select the test step and use the shortcut Ctrl+X.

To paste a test step, right-click the area to the left of a step name and select Paste step, then:

* Paste before step
* Paste after step
* Paste sub-step

Alternatively, select the test step and use the shortcut Ctrl+V.
Reorder Test Steps and Transitions

To reorder the test steps in a test sequence:

1 Point to a test step. The icon : appears to the left of the step name.

2 Click and drag the icon to reorder the test step.

You can reorder test steps within the same hierarchy level. When you move a test step, any sub-steps
move with the test step.

Step
nitialize

996 Initialize data outputs.
Stickinputin = 0;

alpharad = 0;

gradsec = 0;

B: Setup

Drag to reorder| .
step - 4
g o

To reorder step transitions within the same test step, click and drag a transition number to reorder
the transition. The corresponding next step moves with the transition.

Transition Next Step
1 Speed > 50 o BrakeTest

Drag to reorder LimitTest
transition

Change Test Step Hierarchy

To move a test step to a lower level in the hierarchy, right-click the step and select Indent step. You
can only indent a test step when the preceding step is at the same hierarchy level. You cannot indent
the first test step in a sequence or the first step in a hierarchy group.

To move a test step to a higher level in the hierarchy, right-click the step and select Outdent step.
You can only move the last step in a hierarchy group to a higher level in the hierarchy.

Manage Input, Output, and Data Objects

In the Symbols sidebar of the Test Sequence Editor, you add, edit, or delete symbols in the Test
Sequence block. You can access these symbols from test steps at any hierarchy level. To show or hide

the Symbols sidebar, click the Symbols Sidebar button on the Test Sequence Editor toolbar.

3-27

3 Test Sequences and Assessments

3-28

Symhbaols
Input

1. 1) gear
Ourtpurt

1. i) speed

2. [thraottle

Local
Constant

Parameter

Data Store Memory

To add a data symbol, point to the node for a symbol type and click an add symbol button. Available
options and additional setup steps depend on the symbol type.

Symbol Type |Description Procedure for Adding Symbol
Input Options for input entries 1 In the Symbols sidebar, point to the Input
include: node and click either:
* Data U Add data
e Messages
¢ Add message
Enter the name of the input and press Enter.
Output Options for output entries In the Symbols sidebar, point to the Output
include: node and click:
* Data U Add data
* Messages .
+ Function Calls ' Add message
» Triggers * f Add function call
* % Add trigger
2 Enter the name of the output and press
Enter.
Local Local data entries are available |1 In the Symbols sidebar, point to the Local
only inside the Test Sequence .o [
block in which they are defined. izl sl elffel L_tcile i
2 Enter the name of the local variable and
press Enter. Initialize the local variable in
the first test step.

Test Sequence Editor

Symbol Type |Description Procedure for Adding Symbol
Constant Constants are read-only data 1 In the Symbols sidebar, point to the
entries available only inside the .o [
Test Sequence block in which Constant node and click ' Add data.
they are defined. 2 Enter the name of the constant and press
Enter.
3 Point to the name of the constant and click
=l Eait.
4 In the dialog box, in the Constant Value
field, enter the value of the constant.
Parameter Parameters are available inside |1 Using the Model Explorer, add a parameter
and outside the Test Sequence in the workspace of the model that contains
block. the Test Sequence block.
2 In the Symbols sidebar, point to the
Parameter node and click ' Add data.
3 Enter the name of the parameter and press
Enter.
Data Store Data Store Memory entries are |1 Using the Model Explorer, add a
Memory available inside and outside the Simulink.Signal object in the workspace
Test Sequence block. of the model that contains the Test Sequence
block. Alternatively, add a Data Store
Memory block to the model.
2 In the Symbols sidebar, point to the Data
Store Memory node and click ' Add data.
3 Enter the name of the data store and press

Enter.

To edit a data symbol, point to the name of the symbol and click = Edit.

To delete a data symbol, point to the name of the symbol and click X Delete.

Find and Replace

You can find and replace text in Test Sequence actions, transitions, and descriptions by using the

Find & Replace tool in the Test Sequence Editor.

1

To open the Find & Replace tool, click the

g A W N

% icon in the toolbar.

In the Find what field, enter the text you want to locate.

In the Replace with field, enter the updated text.

To locate the text, click Find Next or Find Previous.

To replace the old text with the updated text, click Replace.

When running a search, the Find & Replace tool searches descriptions only if the description

column is open.

3-29

3 Test Sequences and Assessments

Automatic Syntax Correction

The Test Sequence Editor changes the syntax automatically for:
* Duplicate test step names. For example, if step 1 exists, and you change another step name to
step_1, the step name you change automatically changes to step 2.

* Increment and decrement operations, such as a++ and a- -. For example, a++ is changed to
a=a+1.

* Assignment operations, such as a+=expr, a—=expr, a*=expr, and a/=expr. For example, a
+=b is changed to a=a+b.

* Evaluation operations, such as a!=expr and !a. For example, a!=b is changed to a~=b.

* Explicit casts for literal constant assignments. For example, if y is defined as type single,
then y=1 is changed to y=single(1).

See Also
Test Assessment | Test Sequence

Related Examples

. “Test Sequence Basics” on page 3-2
. “Programmatically Create a Test Sequence” on page 3-43
. “Test Sequence and Assessment Syntax” on page 3-47

. “Use Stateflow Chart for Test Harness Inputs and Scheduling” on page 3-8

3-30

Actions and Transitions

Actions and Transitions

In this section...

“Transition Between Steps Using Temporal or Signal Conditions” on page 3-31
“Temporal Operators” on page 3-31
“Transition Operators” on page 3-32

“Use Messages in Test Sequences” on page 3-33

Transition Between Steps Using Temporal or Signal Conditions

The Test Sequence block uses MATLAB as the action language. You can transition between test steps
by evaluating the component under test. You can use conditional logic, temporal operators, and event
operators.

Consider a simple test sequence that outputs a sine wave at three frequencies. The Test Sequence
block steps through several actions bases on changes in the signal switch. See hasChanged.

Data Symbols step Transition Next Step
Input I
Initialize 1 true Sine v
Switch SignalOut = 0;
QOutput
- Sine i ;
g Ot 1. hasChanged{Swltch} Sines v
1anai SignalOut = sin(et"2*pir10);
Local
Sined i i
Constant 1. hasChangedFrom(Switch,1) sine16 k
SignalOut = sin(et*8*pi/i10);
Parameter
Data Store Memory Sine16 1. hasChangedTo(Switch,13.344) stgp v
SignalOut = sin(et™ 6*pi/10);
Stop
SignalOut = 0;

Temporal Operators

To create an expression that evaluates the simulation time, use temporal operators. Variables used in
signal conditions must be inputs, parameters, or constants in the Test Sequence block.

Operator |Syntax Description Example
et et(TimeUnits) The elapsed time of the The elapsed time of the test sequence
test step in TimeUnits. step in milliseconds:

Omitting TimeUnits
returns the value in
seconds.

et(msec)

3-31

3 Test Sequences and Assessments

Operator |Syntax Description Example
t t(TimeUnits) The elapsed time of the The elapsed time of the simulation in
simulation in TimeUnits. |microseconds:
Omitting TimeUnits
returns the value in t(usec)
seconds.
after after(n, Returns true if n specified |After 4 seconds:
TimeUnits) units of time in TimeUnits
elapse since the beginning [2fter(4,sec)
of the current test step.
before before(n, Returns true until n Before 4 seconds:
TimeUnits) specified units of time in
TimeUnits elapse, before(4,sec)
beginning with the current
test step.
duration |ElapsedTime Returns ElapsedTime in |Return true if the time in
duration TimeUnits for which milliseconds since Phi > 1is
(Condition, Condition has been greater than 550:
TimeUnits) true. ElapsedTime is) .
reset when the test Step is duration(Phi>1 , msec) > 550
re-entered or when
Condition is no longer
true.

Syntax in the table uses these arguments:

TimeUnits
The units of time
Value: sec|msec|usec

Examples:

msec

Condition

Logical expression triggering the operator. Variables used in duration can be inputs, parameters, or

constants, with at most one local or output data.

Examples:

u>20
X <= 1.56

Transition Operators

To create expressions that evaluate signal events, use transition operators. Common transition
operators include:

3-32

Actions and Transitions

Operator Syntax Description Example
hasChanged hasChanged (u) Returns true if u Transition when h
changes in value since |changes:
the beginning of the
test step, otherwise hasChanged (h)
returns false.
u must be an input data
symbol.
hasChangedFrom hasChangedFrom(u,A) Returns true if u Transition when h
changes from the value |changes from 1:
A, otherwise returns
false. hasChangedFrom(h, 1)
u must be an input data
symbol.
hasChangedTo hasChangedTo (u,B) Returns true if u Transition when h
changes to the value B, |changes to 0:
otherwise returns false.
hasChangedTo (h,0)
u must be an input data
symbol.

Use Messages in Test Sequences

Messages carry data between Test Sequence blocks and other blocks such as Stateflow® charts.
Messages can be used to model asynchronous events. A message is queued until you evaluate it,
which removes it from the queue. You can use messages and message data inside a test sequence.
The message remains valid until you forward it, or the time step ends. For more information, see
“Messages” (Stateflow) in the Stateflow® documentation.

Receive Messages and Access Message Data

If your Test Sequence block has a message input, you can use queued messages in test sequence
actions or transitions. Use the receive command before accessing message data or forwarding a
message.

To create a message input, hover over Input in the Symbols sidebar, click the add message icon, and
enter the message name.

Symbols

X
Input [Input? Add message

receive(M) determines whether a message is present in the input queue M, and removes the
message from the queue. receive (M) returns true if a message is in the queue, and false if not.
Once the message is received, you can access the message data using the dot notation, M.data, or
forward the message. The message is valid until it is forwarded or the current time step ends.

The order of message removal depends on the queue type. Set the queue type using the message
properties dialog box. In the Symbols sidebar, click the edit icon next to the message input, and
select the Queue type.

3-33

3 Test Sequences and Assessments

Send Messages

To send a message, create a message output and use the send command. To create a message
output, hover over Output in the Symbols sidebar, click the add message icon, and enter the
message name.

X
Output EE=RY e O utpuit 1 Add message

You can assign data to the message using the dot notation M. data, where M is the message output of
the Test Sequence block. send (M) sends the message.

Forward Messages
You can forward a message from an input message queue to an output port. To forward a message:

1 Receive the message from the input queue using receive.

2 Forward the message using the command forward(M,M out) where M is the message input
queue and M out is the message output.

Compare Test Sequences Using Data and Messages

This example demonstrates message inputs and outputs, sending, and receiving a message. The
model compares two pairs of test sequences. Each pair is comprised of a sending and receiving test
sequence block. The first pair sends and receives data, and the second sends and receives a message.

Set the model name variable.

model = 'sltest testsequence data vs message';

Open the model.

open_system(model)

1 1
2 M | 2Achve
3 3
dataStep
DataSender DataReceiver [:]

messageStep
1 1
2 M M | ZrActve
3 3

MeszageSender MessageRecever

Y

Y

110

Y

Y

Test Sequences Using Data

The DataSender block assigns a value to a data output M.

3-34

Actions and Transitions

Step Transition Next Step Description
step_1 iE U (ermeeiEiih
M =3.5] B the data
step 2

The DataReceiver block waits 3 seconds, then transitions to step S2. Step S2 transitions to step S3
using a condition comparing M to the expected value, and does the same for S3 to S4.

Step Transition Next Step Description
51 ... © e - B B
52 .. N .]
=3 1. M==35 sS4 o
sS4

Test Sequences Using Messages

The MessageSender block assigns a value to the message data of a message output M out, then
sends the message to the MessageReceiver block.

Step Transition Next Step Description
step_1 1 step 2 ¥ Assigns avalue o
M.data = 3.5; - the message's data
step_2 1 step 3 v Sendsihe message
send(M) B
step_3

The MessageReceiver block waits 3 seconds, then transitions to step S2. Step S2's transition
evaluates the queue M with receive (M), removing the message from the queue. receive (M)
returns true since the message is present. M.data == 3.5 compares the message data to the
expected value. The statement is true, and the sequence transitions to step S3.

3-35

3 Test Sequences and Assessments

Step
51

52

53

54

3-36

Transitioh Next Step Description
1. after(3,5ec) g2 v WNaits
1. receive(M) && M.data == 3.5 53 L Transitions to 53 if a message

is available in the gqueue and
message data == 3.9,

1. receive(M) 54 ¥ Transitions to 54 if a message
is available in the queue.
(it 5 not, because it has been
received).

When step S3's transition condition evaluates, no messages are present in the queue. Therefore, S3
does not transition to S4.

Run the test and observe the output comparing the different behaviors of the test sequence pairs.

open_system([model '/Scope'])

sim(model)

[= [=] &3
File Tools View Simulation Help E
@- AOP®| - &L F4-

datastep

Ready Sample based T=6.000

Actions and Transitions

close system(model,0)
clear(model)

See Also
“Test Sequence and Assessment Syntax” on page 3-47 | Test Sequence

Related Examples

. “Assess Model Simulation Using verify Statements” on page 3-15
. “Signal Generation Functions” on page 3-38
. “Use Stateflow Chart for Test Harness Inputs and Scheduling” on page 3-8

3-37

3 Test Sequences and Assessments

Signal Generation Functions

Symbols
Input

Output
1. [#:) 8Q
Local
nr
Constant

Parameter

In this section...

“Sinusoidal and Random Number Functions in Test Sequences” on page 3-38
“Using an External Function from a Test Sequence Block” on page 3-39

“Signal Generation Functions” on page 3-40

In the Test Sequence block, you can generate signals for testing.

1 Define an output data symbol in the Data Symbols pane.
2 Use the output name with a signal generation function in the test step action.

You can call external functions from the Test Sequence block. Define a function in a script on the
MATLAB path, and call the function in the test sequence.

Sinusoidal and Random Number Functions in Test Sequences

This example shows how to produce a sine and a random number test signal in a Test Sequence
block.

The step Sine outputs a sine wave with a period of 10 seconds, specified by the argument
et*2*pi/10. The step Random outputs a random number in the interval -0.5 to 0.5.

Step Transition Next Step
Initialize 1. true Sine v
sg = 0;
Sine 1. after(10,sec) Stop J

sg = sin(et*2*pi/10);

Stop 1. true Random ¥
sg=0;

Data Store Memory

3-38

Random 1. after(10,sec) End v
coder.extrinsic({'rand');

nr = rand;
sg=nr-0.5;

End
sg=0;

The test sequence produces signal sg.

Signal Generation Functions

i

File Tools View

R

Ready

Simulation Help u

= Q- E- | F&-

Sample based T=15.000

Using an External Function from a Test Sequence Block

This example shows how to call an externally-defined function from the Test Sequence block. Define a
function in a script on the MATLAB® path, and call the function from the test sequence.

In this example, the step ReducedSine reduces the signal sg using the function Attenuate.

Symbols Step Transition Next Step
Input Initialize 1. frue ReducedSine ¥
Output 50 = 0;
1. 54
ReducedSine 1. after(10,5ec) Sto v
B sg = sin(et*2*pi/10); I: j P
Local asg = Attenuate(sg);
Constant
Parameter Stop
sg=0;

Data Store Memory

The test sequence produces signal sg and attenuated signal asg.

3-39

3 Test Sequences and Assessments

3-40

-

File Toaols

8- ae®P>E

Ready

View

Simulation

= Q- E- | F&-

Sample based T=15.000

|

Signal Generation Functions

Some signal generation functions use the temporal operator et, which is the elapsed time of the test
step in seconds. Scaling, rounding, and other approximations of argument values can affect function
outputs. Common signal generation functions include:

Function

Syntax

Description

Example

square

square(x)

Represents a square wave
output with a period of 1 and
range —1 to 1.

Within the interval @ <= x <
1, square(x) returns the
value 1 for 0 <= x <
0.5and -1for 0.5 <= x <
1.

Output a square wave with a
period of 10 sec:

square(et/10)

Signal Generation Functions

Function Syntax Description Example
sawtooth sawtooth(x) Represents a sawtooth wave |Output a sawtooth wave with
output with a period of 1 and |a period of 10 sec:
range —1 to 1.
sawtooth(et/10)
Within the interval @ <= x <
1, sawtooth(x) increases.
triangle triangle(x) Represents a triangle wave Output a triangle wave with a
output with a period of 1 and |period of 10 sec:
range —1 to 1. .
triangle(et/10)
Within the interval 0 <= x <
0.5, triangle(x) increases.
ramp ramp(x) Represents a ramp signal of |Ramp one unit for every 5
slope 1, returning the value of |seconds of test step elapsed
the ramp at time x. time:
ramp (et) effectively returns |ramp(et/5)
the elapsed time of the test
step.
heaviside heaviside(x) [Represents a heaviside step |Output a heaviside signal
signal, returning 0 for x < @ |after 5 seconds:
and 1 for x >= 0.
heaviside(et-5)
latch latch(x) Saves the value of x at the Latch b to the value of
first time latch(x) evaluates |torque:
in a test step, and
subsequently returns the b = latch(torque)
saved value of x. Resets the
saved value of x when the
step exits. Reevaluates
latch(x) when the step is
next active.
sin sin(x) Returns the sine of x, where X |A sine wave with a period of
is in radians. 10 sec:
sin(et*2*pi/10)
cos cos (x) Returns the cosine of x, where |A cosine wave with a period of

X is in radians.

10 sec:

cos(et*2*pi/10)

3-41

3 Test Sequences and Assessments

3-42

Function

Syntax

Description

Example

rand

rand

Uniformly distributed
pseudorandom values

Generate new random values
for each simulation by
declaring rand extrinsic with
coder.extrinsic. Assign
the random number to a local
variable. For example:

coder.extrinsic('rand"')
nr rand
sg a + (b-a)*nr

randn

randn

Normally distributed
pseudorandom values

Generate new random values
for each simulation by
declaring randn extrinsic
with coder.extrinsic.
Assign the random number to
a local variable. For example:

coder.extrinsic('randn')
nr = randn
Sg = nr*2

exp

exp(x)

Returns the natural
exponential function, e*.

An exponential signal
progressing at one tenth of
the test step elapsed time:

exp(et/10)

See Also

“Test Sequence and Assessment Syntax” on page 3-47 | Test Sequence

Related Examples

. “Assess Model Simulation Using verify Statements” on page 3-15

. “Actions and Transitions” on page 3-31

Programmatically Create a Test Sequence

Programmatically Create a Test Sequence

This example shows how to create a test harness and test sequence using the programmatic
interface. You create a test harness and a Test Sequence block, and author a test sequence to verify
two functional attributes of a cruise control system.

Create a Test Harness Containing a Test Sequence Block

1. Load the model.

model = 'sltestCruiseChart';
load_system(model)

2. Create the test harness.

sltest.harness.create(model, 'Name', 'Harnessl', ...
'Source', 'Test Sequence')

sltest.harness.load(model, 'Harnessl');

set param('Harnessl', 'StopTime',"'15");

Author the Test Sequence

1. Add a local variable endTest and set the data type to boolean. You use endTest to transition
between test steps.

sltest.testsequence.addSymbol('Harnessl/Test Sequence', 'endTest',...
'Data', 'Local');

sltest.testsequence.editSymbol('Harnessl/Test Sequence', 'endTest',...
'DataType', 'boolean');

2. Change the name of the step Run to Initializel.

sltest.testsequence.editStep('Harnessl/Test Sequence', 'Run',...
"Name', 'Initializel');

3. Add a step BrakeTest. BrakeTest checks that the cruise control disengages when the brake is
applied. Add substeps defining the test scenario actions and verification.

sltest.testsequence.addStepAfter('Harnessl/Test Sequence',...
'BrakeTest', 'Initializel', 'Action', 'endTest = false;')

% Add a transition from |Initializel| to |BrakeTest]|.
sltest.testsequence.addTransition('Harnessl/Test Sequence',...
'Initializel', 'true', 'BrakeTest')

% This sub-step enables the cruise control and sets the speed.
% |SetValuesActions| is the actions for BrakeTest.SetValues.
setValuesActions = sprintf('CruiseOn0ff = true;\nSpeed = 50;");
sltest.testsequence.addStep('Harnessl/Test Sequence',...
'BrakeTest.SetValues', 'Action',setValuesActions)

% This sub-step engages the cruise control.

setCCActions = sprintf('CoastSetSw = true;');

sltest.testsequence.addStepAfter('Harnessl/Test Sequence',...
'BrakeTest.Engage', 'BrakeTest.SetValues', 'Action',setCCActions)

% This step applies the brake.

3-43

3 Test Sequences and Assessments

3-44

brakeActions = sprintf('CoastSetSw = false;\nBrake = true;"');
sltest.testsequence.addStepAfter('Harnessl/Test Sequence',...
'BrakeTest.Brake', 'BrakeTest.Engage', 'Action',brakeActions)

% This step verifies that the cruise control is off.

brakeVerifyActions = sprintf('verify(engaged == false)\nendTest = true;"');

sltest.testsequence.addStepAfter('Harnessl/Test Sequence',...
'BrakeTest.Verify', 'BrakeTest.Brake', 'Action',brakeVerifyActions)

% Add transitions between steps.
sltest.testsequence.addTransition('Harnessl/Test Sequence',...
'BrakeTest.SetValues', 'true', 'BrakeTest.Engage')
sltest.testsequence.addTransition('Harnessl/Test Sequence',...
'BrakeTest.Engage', 'after(2,sec)', 'BrakeTest.Brake')
sltest.testsequence.addTransition('Harnessl/Test Sequence',...
'BrakeTest.Brake', 'true', 'BrakeTest.Verify')

4. Add a step Initialize2 to initialize component inputs. Add a transition from BrakeTest to
Initialize2.

init2Actions = sprintf(['CruiseOn0ff = false;\n'...

'Brake = false;\n'...

'Speed = 0;\n"...

'CoastSetSw = false;\n'...

"AccelResSw = false;']);
sltest.testsequence.addStepAfter('Harnessl/Test Sequence',...

'Initialize2', 'BrakeTest', 'Action',init2Actions)
sltest.testsequence.addTransition('Harnessl/Test Sequence',...

'BrakeTest', 'endTest == true', 'Initialize2')

5.Add a step LimitTest. LimitTest checks that the cruise control disengages when the vehicle
speed exceeds the high limit. Add a transition from the Initialize?2 step, and add sub-steps to
define the actions and verification.

sltest.testsequence.addStepAfter('Harnessl/Test Sequence',...
'LimitTest', 'Initialize2')

sltest.testsequence.addTransition('Harnessl/Test Sequence',...
'Initialize2', 'true', 'LimitTest')

% Add a step to enable cruise control and set the speed.

setValuesActions2 = sprintf('CruiseOn0ff = true;\nSpeed = 60;"');

sltest.testsequence.addStep('Harnessl/Test Sequence',...
"LimitTest.SetValues', 'Action',setValuesActions2)

% Add a step to engage the cruise control.

setCCActions = sprintf('CoastSetSw = true;');

sltest.testsequence.addStepAfter('Harnessl/Test Sequence',...
'LimitTest.Engage', 'LimitTest.SetValues', 'Action',setCCActions)

% Add a step to ramp the vehicle speed.
sltest.testsequence.addStepAfter('Harnessl/Test Sequence',...
'LimitTest.RampUp', 'LimitTest.Engage', 'Action', 'Speed = Speed + ramp(5*et);"')

% Add a step to verify that the cruise control is off.

highLimVerifyActions = sprintf('verify(engaged == false)');

sltest.testsequence.addStepAfter('Harnessl/Test Sequence',...
'LimitTest.VerifyHigh', 'LimitTest.RampUp"', "Action',highLimVerifyActions)

Programmatically Create a Test Sequence

[engaged)

[tspeed]

%
%

vehicle speed exceeds 90.

Add transitions between steps. The speed ramp transitions when the

sltest.testsequence.addTransition('Harnessl/Test Sequence',...
'LimitTest.SetValues', 'true','LimitTest.Engage')

sltest.testsequence.addTransition('Harnessl/Test Sequence',...
'LimitTest.Engage', 'true', 'LimitTest.RampUp"')

sltest.testsequence.addTransition('Harnessl/Test Sequence',...
'LimitTest.RampUp', 'Speed > 90', 'LimitTest.VerifyHigh')

Open the test harness to view the test sequence.

sltest.harness.open(model, 'Harnessl');

h 4

CruisaOnOff

Brake

o
A4

3 >

Speed

[

CoastSetSw

AccelResSw

Signal spec.
and routing

cilipaibneRpCnart

Brake engaged

Speesd
CoastSetsw

AepelResSw

P ———® [engaged
engaged <engaged: [engaged]

tspeed tepead <tspaad| < lispeed]

Signal spec.
and routing

Double-click the Test Sequence block to open the editor and view the test sequence.

3-45

3 Test Sequences and Assessments

E Harness1/Test Sequence * - Test Sequence Editor

= 4 BEs 88 4@k

Symbals Step Transition
Input I
pu Initialize1 1. true
1. <) engaged

%% Initialize data outputs.
CruiseOnOff = false;
Qutput Brake = false;
) Speed = single(0);
1- & CruiseOnOf CoastSetSw = false:
2. [} Brake AccelResSw = false;

2. |5 tepeed

3. |5 Speed
H BrakeTest 1. endTest == true
4 [)
L) GoastSetSw endTest = false;
5. [AccelRessw

SefValues 1. true
CruiseOnOff = true;
endTest Speed = 50;

Caonstant

Lacal

Engage 1. after(2,sec)
Parameter CoastSetSw = frue;

Data Store Memory
Brake 1. true
CoastSetSw = false;
Brake = true;

Verify
verify(engaged == false)
endTest = true;

Initialize2 1. true
CruiseOnOff = false;

Brake = false;
Speed = 0;
CoastSetSw = false;
AccelResSw = false;

2

H LimitTest

-

Next Step
BrakeT... ¥

Initialize2 v

Engage v

Brake Y

Werify v

LimitTest v

— O

dhd

Description

2

>

r

Close the Test Harness and Model

sltest.harness.close(model, 'Harnessl');
close _system(model,0);

3-46

Test Sequence and Assessment Syntax

Test Sequence and Assessment Syntax

In this section...

“Assessment Statements” on page 3-47
“Temporal Operators” on page 3-48
“Transition Operators” on page 3-49
“Signal Generation Functions” on page 3-50
“Logical Operators” on page 3-52
“Relational Operators” on page 3-52

This topic describes syntax used within Test Sequence and Test Assessment blocks, and Stateflow
charts. In the blocks, you use this syntax for test step actions, transitions, and assessments. In charts,
you use this syntax in states and transitions.

For information on using the command-line interface to create and edit test sequence steps,
transitions, and data symbols, see the functions listed under Test Sequences on the “Test Scripts”
page.

Test Sequence and Test Assessment blocks use MATLAB as the action language. You define actions,
transitions, assessments with assessment operators, temporal operators, transition operators, signal
generation functions, logical operators, and relational operators. Except for verify, Stateflow charts
can use all operators in MATLAB or C as the action language. verify can be used only with MATLAB
language. For example:

* To output a square wave with a period of 10 sec:

square(et/10)
» To transition when h changes to 0:

hasChangedTo(h,0)
* To verify that x is greater than y:

verify(x > vy)

Assessment Statements

To verify simulation, stop simulation, and return verification results, use assessment statements.

Keyword |Statement Syntax Description Example
verify verify(expression) Assesses a logical verify(x >vy,...
expression. Optional |'SimulinkTest:"...
verify(expression, arguments label ‘greaterThan', ...
errorMessage) results in the Test | X 2@nd y values are

Manager and R)

verify(expression, diagnostic viewer.

identifier,
errorMessage)

3-47

3 Test Sequences and Assessments

3-48

Keyword

Statement Syntax

Description

Example

assert

assert(expression)

assert(expression,

errorMessage)

Evaluates a logical
expression. Failure

returns an error.
Optional arguments
return an error
message.

stops simulation and

assert(h==0 && k==0, ...
'h and k must '...
'initialize to 0')

Syntax in the table uses these arguments:

expression

Logical statement assessed

Examples:

h >0 & k ==

identifier

Label applied to results in the Test Manager

aaa, bbb, and zzz.

Examples:

'SimulinkTest:greaterThan'

errorMessage

Label applied to messages in the diagnostic viewer

Value: String

Examples:

'x and y values are %d, %d', X,y

Temporal Operators

To create an expression that evaluates the simulation time, use temporal operators. Variables used in
signal conditions must be inputs, parameters, or constants in the Test Sequence block.

Operator

Syntax

Description

Example

et

et(TimeUnits)

The elapsed time of the
test step in TimeUnits.
Omitting TimeUnits
returns the value in
seconds.

The elapsed time of the test sequence
step in milliseconds:

et (msec)

Test Sequence and Assessment Syntax

Operator |Syntax Description Example
t t(TimeUnits) The elapsed time of the The elapsed time of the simulation in
simulation in TimeUnits. |microseconds:
Omitting TimeUnits
returns the value in t(usec)
seconds.
after after(n, Returns true if n specified |After 4 seconds:
TimeUnits) units of time in TimeUnits
elapse since the beginning [2fter(4,sec)
of the current test step.
before before(n, Returns true until n Before 4 seconds:
TimeUnits) specified units of time in
TimeUnits elapse, before(4,sec)
beginning with the current
test step.
duration |ElapsedTime Returns ElapsedTime in |Return true if the time in
duration TimeUnits for which milliseconds since Phi > 1is
(Condition, Condition has been greater than 550:
TimeUnits) true. ElapsedTime is) .
reset when the test Step is duration(Phi>1 , msec) > 550
re-entered or when
Condition is no longer
true.

Syntax in the table uses these arguments:

TimeUnits
The units of time
Value: sec|msec|usec

Examples:

msec

Condition

Logical expression triggering the operator. Variables used in duration can be inputs, parameters, or

constants, with at most one local or output data.

Examples:

u>20
X <= 1.56

Transition Operators

To create expressions that evaluate signal events, use transition operators. Common transition
operators include:

3-49

3 Test Sequences and Assessments

Operator Syntax Description Example

hasChanged hasChanged (u) Returns true if u Transition when h
changes in value since |changes:
the beginning of the

test step, otherwise hasChanged (h)
returns false.
u must be an input data
symbol.
hasChangedFrom hasChangedFrom(u,A) Returns true if u Transition when h

changes from the value |changes from 1:
A, otherwise returns

false. hasChangedFrom(h,1)
u must be an input data
symbol.

hasChangedTo hasChangedTo (u,B) Returns true if u Transition when h

changes to the value B, |changes to 0:

otherwise returns false.
hasChangedTo (h,0)

u must be an input data
symbol.

Signal Generation Functions

Some signal generation functions use the temporal operator et, which is the elapsed time of the test
step in seconds. Scaling, rounding, and other approximations of argument values can affect function
outputs. Common signal generation functions include:

Function Syntax Description Example

square square(x) Represents a square wave Output a square wave with a
output with a period of 1 and |period of 10 sec:

range —1 to 1.
square(et/10)

Within the interval 0 <= x <
1, square(x) returns the
value 1 for 0 <= x <
0.5and -1 for 0.5 <= x <
1.

sawtooth sawtooth(x) Represents a sawtooth wave |[Output a sawtooth wave with
output with a period of 1 and |a period of 10 sec:

range —1 to 1.
sawtooth(et/10)

Within the interval 0 <= x <
1, sawtooth(x) increases.

3-50

Test Sequence and Assessment Syntax

Function Syntax Description Example
triangle triangle(x) Represents a triangle wave Output a triangle wave with a
output with a period of 1 and |period of 10 sec:
range —1 to 1. .
triangle(et/10)
Within the interval @ <= x <
0.5, triangle(x) increases.
ramp ramp (x) Represents a ramp signal of |Ramp one unit for every 5
slope 1, returning the value of |seconds of test step elapsed
the ramp at time x. time:
ramp (et) effectively returns |ramp(et/5)
the elapsed time of the test
step.
heaviside heaviside(x) |Represents a heaviside step |Output a heaviside signal
signal, returning 0 for x < @ |after 5 seconds:
and 1 forx >= 0.
heaviside(et-5)
latch latch(x) Saves the value of x at the Latch b to the value of
first time latch(x) evaluates |[torque:
in a test step, and
subsequently returns the b = latch(torque)
saved value of x. Resets the
saved value of X when the
step exits. Reevaluates
latch(x) when the step is
next active.
sin sin(x) Returns the sine of x, where x |A sine wave with a period of
is in radians. 10 sec:
sin(et*2*pi/10)
cos cos (x) Returns the cosine of X, where |A cosine wave with a period of
X is in radians. 10 sec:
cos(et*2*pi/10)
rand rand Uniformly distributed Generate new random values

pseudorandom values

for each simulation by
declaring rand extrinsic with
coder.extrinsic. Assign
the random number to a local
variable. For example:

coder.extrinsic('rand"')
nr = rand
sg = a + (b-a)*nr

3-51

3 Test Sequences and Assessments

Function Syntax Description Example
randn randn Normally distributed Generate new random values
pseudorandom values for each simulation by

declaring randn extrinsic
with coder.extrinsic.
Assign the random number to
a local variable. For example:

coder.extrinsic('randn')

nr = randn
Sg = Nnr*2
exp exp(x) Returns the natural An exponential signal
exponential function, eX. progressing at one tenth of

the test step elapsed time:

exp(et/10)

Logical Operators

You can use logical connectives in actions, transitions, and assessments. In these examples, p and q
represent Boolean signals or logical expressions.

Operation Syntax Description Example
Negation ~p not p verify(~p)
Conjunction p & ¢ p and g verify(p && q)
Disjunction p ||l g porq verify(p || q)
Implication ~p |l g if p, q. Logically verify(~p || q)

equivalent to
implication p = q.

Biconditional (p & q) || (~p && |p and g, or not p and verify((p && q) ||
~q) not g. Logically (~p & ~q))
equivalent to
biconditional p < q.

Relational Operators

You can use relational operators in actions, transitions, and assessments. In these examples, x and y
represent numeric-type variables.

Using == or ~= operators in a verify statement returns a warning when comparing floating-point
data. Consider the precision limitations associated with floating-point numbers when implementing
verify statements. See “Floating-Point Numbers” (MATLAB). If you use floating-point data, consider
defining a tolerance for the assessment. For example, instead of verify(x == 5), verify x within a
tolerance of 0.001:

verify(abs(x-5) < 0.001)

Operator and Syntax Description Example
X >y Greater than verify(x > vy)

3-52

Test Sequence and Assessment Syntax

Operator and Syntax Description Example

X <y Less than verify(x < vy)
X >=y Greater than or equal to verify(x >= vy)
X <=y Less than or equal to verify(x <= vy)
X ==Yy Equal to verify(x == vy)
X ~=y Not equal to verify(x ~=vy)
See Also

Related Examples

. “Assess Model Simulation Using verify Statements” on page 3-15
. “Actions and Transitions” on page 3-31

. “Signal Generation Functions” on page 3-38

. “Programmatically Create a Test Sequence” on page 3-43

3-53

3 Test Sequences and Assessments

Debug a Test Sequence

3-54

In this section...

“View Test Step Execution During Simulation” on page 3-54
“Set Breakpoints to Enable Debugging” on page 3-54

“View Data Values During Simulation” on page 3-55

“Step Through Simulation” on page 3-55

You can debug a test sequence using tools in the Test Sequence Editor. Debugging involves setting
breakpoints to stop simulation, observing data and test sequence progression, and manually stepping
through test steps. You can try these features using the model sltestTestSegDebuggingExample.
To open the model, enter

cd(fullfile(docroot, 'toolbox', 'sltest', 'examples'))
open_system('sltestTestSegDebuggingExample')

Save a copy of the model to a writable location on the MATLAB path. Double-click the Test Sequence
block to open the Test Sequence Editor.

View Test Step Execution During Simulation

By default, simulation animates the test sequence by highlighting active steps and transitions.
Observing test step execution can help you debug, particularly when manually stepping through the

test sequence. Adjust the animation speed using the Change Animation Speed button (:j 7 in the
toolbar.

Animation speed affects simulation speed. If you slow down animation speed for debugging, return
the speed to Fast or Lightning Fast when you finish debugging to avoid slowing your simulation. If
you do not need the test step highlights and want the fastest simulation, choose None.

Set Breakpoints to Enable Debugging

You enable debugging for a test sequence by adding one or more breakpoints. Breakpoints halt
simulation every time the test step is evaluated. Therefore, breakpoints on some test steps, such as
When decomposition parent steps, halt simulation repeatedly because the step is evaluated
repeatedly. When simulation halts, you can view data used in the test sequence to investigate the
sequence simulation behavior.

You can add breakpoints to test step actions or transitions:

* To add a breakpoint to a test step action, right-click the test step and select Break while
executing step.

E™% PowerCycleTest 1. after(3,sec) PowerOnTest v

Powerl = 0.5*square(t)+0.5;

» To add a breakpoint to a test step transition, right-click the test step transition and select Break
when transition taken.

Debug a Test Sequence

Step Transition
InitializeTest 1. after(1,sec)
Fowerl = 0;

Fowerz = 0;

The editor displays a breakpoint marker. After adding breakpoints, simulate the test sequence by
clicking Run.

View Data Values During Simulation

If the simulation pauses (for example, at a breakpoint), you can view the status of data used in a test
step by hovering over the test step. The data values at the current simulation time display next to the
test sequence cell.

Data used by

Ll PowerTwoOn:
Power2 = Power2 = 1
b Powerl =0

Note If you advance the simulation to another stop (for example, using the keyboard shortcuts), the
data display does not update. Move off the test step and then hover over the step again to refresh the
values.

Step Through Simulation

When simulation halts, you can step through the test sequence using the toolbar buttons. Also see
“Debugging and Breakpoints Keyboard Shortcuts” (Simulink).

Objective Details Toolbar Button
Simulate until Simulation runs until the @

breakpoint next breakpoint

Step forward through |Simulation advances one IS

simulation time simulation step

Step forward through |Simulation advances by |

test step actions and each step of a test =

transitions sequence, with pauses at

actions and transitions.
Does not step into a
function call.

Step in to a test step Simulation advances into %
group or called function |the substeps of a parent -
step and executes each
action and transition. Steps
into a function call.

3-55

3 Test Sequences and Assessments

3-56

Objective

Details

Toolbar Button

Step out of a test step
group or called function

Simulation advances
through the remaining
substeps of a parent step
and then out to the parent
step hierarchy level. Also
finishes execution of a
function call.

E

See Also

“Test Sequence Editor” on page 3-26 | Test Sequence

Test Downshift Points of a Transmission Controller

Test Downshift Points of a Transmission Controller

This example demonstrates how to test a transmission shift logic controller using test sequences and
test assessments.

The Model and Controller

This example uses a simplified drivetrain system arranged in a controller-plant configuration. The
objective is to unit test the downshift behavior of the transmission controller.

The Test

The controller should downshift between gear ratios in response to a increasing throttle application.
The test inputs hold vehicle speed constant while ramping the throttle. The Test Assessment block
includes requirements-based assessments of the controller performance.

brake
G —>fiouel]
throttle brake
fihrottie] >—| throttle 1 e 1)
e
shift_controller vehicle

Testing Downshift Points of a Transmission Controller
Caopyright 2014-2017 The MathWarks, Inc.

Open the Test Harness

Click the badge on the subsystem shift controller and open the test harness
controller_harness. The test harness contains a Test Sequence block and a Test Assessment
block connected to the controller subsystem.

3-57

3 Test Sequences and Assessments

spesd .-"='|-| '
spead
-T- gear = - -T-
gear
3 te > >
throttle
| gear
J 1
| speed?
FloatingScope =3
| throittle

Copyright 2014-2017 The MathWorks, Inc.

The Test Sequence
Double-click the Test Sequence block to open the Test Sequence Editor.

The test sequence ramps speed to 75 to initialize the controller in fourth gear. Throttle is then
ramped at constant speed until a gear change. Subsequent initialization and downshifts execute.
After the change to first gear, the test sequence stops.

3-58

Test Downshift Points of a Transmission Controller

Step Transition Next Step
initialize_4 3 1. speed == 75 down 4 3 ¥
throttle = 10; -

speed = O0+ramp(25*et);

down_4_3 1. hasChanged(gear) initialize_3 2 v
throttle = 10+ramp(10*et);
speed =75;

initialize 3 2 1. after(4,sec) down_3 2 Y
throttle = 10;
speed = 45;

down_3_2 1. hasChanged(gear) initialize_2_1 v
throttle = 10+ramp(10*et);
speed = 45;

initialize 2 1 1. after(4,sec) down_2 1 ¥
throttle = 10;
speed = 15;

down_2_1 1. hasChanged(gear) stop v
throttle = 10+ramp(10*et);
speed = 15;

stop
throttle = 0;
speed =0;

Test Assessments for the Controller
This example tests the following conditions:

* Speed value shall be greater than or equal to 0.
* Gear value shall be greater than 0.
* Throttle value shall be between 0 and 100.

» The shift controller shall keep the vehicle speed below specified maximums in each of the first
three gears.

Open the Test Assessment block. The assert statements correspond to the first three conditions. If
the controller violates an assertion, the simulation fails.

assert
assert
assert
assert

speed >= 0, 'speed must be >= 0');

throttle >= 0, 'throttle must be >= 0 and <= 100');
throttle <= 100, 'throttle must be >= 0 and <= 100');
gear > 0, 'gear must be > 0');

PRy

3-59

3 Test Sequences and Assessments

The last condition is checked by three verify statements corresponding to the maximum speeds in
gears 3, 2, and 1:

* Vehicle speed shall not exceed 90 in gear 3.

* Vehicle speed shall not exceed 50 in gear 2.
* Vehicle speed shall not exceed 30 in gear 1.

A When decomposition sequence contains the verify statements. In the When decomposition
sequence, signal conditions determine the active step. A step includes a condition preceded by the
when operator. The last step Else covers undefined conditions and does not use a when statement.
For more information on When decomposition, see "Transition Types" in “Test Sequence Basics” on
page 3-2.

OverSpeed3 when gear==3
verify(speed <= 90, 'Engine overspeed in gear 3')

OverSpeed2 when gear==2
verify(speed <= 50, 'Engine overspeed in gear 2')

OverSpeedl when gear==1
verify(speed <= 30, 'Engine overspeed in gear 1')

Step Transition Next Step
BN AssertConditions

3-60

% These conditions ensure simulation validity.
assertispeed »= 0, 'speed must be == 0');
assert(throttle >= 0, 'throttle must be >= 0 and <= 100');

assert(throttle <= 100, throttle must be >= 0 and <= 100');
assert(gear = 0,'gear must be = 0');

OverSpeed3 when gear==3
% Verify speed within specified range for 3rd gear

verify(speed <= 90,'Engine overspeed in gear 3')

OverSpeed? when gear==
% Verify speed within specified range for 2nd gear

verify(speed <=50,'Engine overspeed in gear 2')

OverSpeedl when gear==
% Verify speed within specified range for 1st gear

verify(speed <= 30,'Engine overspeed in gear 1')

Else
% Else step required for any conditions not corresponding to
% the above three when conditions

Testing the Controller

Simulating the test harness demonstrates the progressive throttle ramp at each test step and the
corresponding downshifts. The controller passes all of the assessments in the Test Assessment block.

Test Downshift Points of a Transmission Controller

View the Results

Click the Simulation Data Inspector button in the test harness toolstrip to view the results. You can
compare the speed signal to the verify statement outputs.

Inspect Compare W speed
.
NAME LINE
- Run 1: controller_harness sop
- i L .
Test Assessment_/OverSpeed2verify(speed ==50) 5 = e s . — - =5 i e

Test Assessment/_/OverSpeedlverify(speed == 30) ———

W TestAssessment!. /OverSpeed3verify(speed == 90)
Fail

[T ——— B NN (NN NN U SN
FROFERTIES

Mame TestAssessment/ /OverSpeed3n

Untested o=

o 5] 15 20 25 30 35 40 45

3-61

3 Test Sequences and Assessments

Examine Model Verification Results by Using Simulation Data
Inspector

This example shows how to use the Simulation Data Inspector to view the output from a model
verification block in a system under test. If you have Simulink® Test™, model verification blocks
return Pass, Fail, or Untested results at each time step. By examining the results of a model

verification block, you can:

* Determine the simulation time when a failure occurs.

* Compare the verification results with other relevant signals.
* Trace failures from the Simulation Data Inspector back to the model.

For more information on Model Verification blocks, see “Model Verification” (Simulink).

Verify Model Behavior With Assertion Block

In this example, the subsystem block Controller models the cruise control system in a car. This
subsystem outputs the throttle value based on the difference between the actual and target speeds.

Siza-Type

Sheet1

Actual spesd b——

Switches enable -—— =

Switches_brake b— =

Switches_set fb—»

&b

Swilches incfb— =

Swilches_ decfp—

3-62

Inputs

thirot 1)

b J

InBus

targetl———— »(7)

Controller

] Throttle_Owut

Safety Properties

The verification subsystem Safety Properties uses an Assertion block to check that the system
disengages when the brake is applied for three consecutive time steps.

Examine Model Verification Results by Using Simulation Data Inspector

Property: When the brake is applied for three consecutive steps, the throttle goes to zero.

i - 4 P AMD

- Ae® " @
B

BrakeAssertion

Ih

Throtte_Out 4|_> Locate Defective Behavior .

Determine Simulation Time of Failure
Simulate the model and view the output of the Assertion block in the Simulation Data Inspector.

1 In the Simulation tab, click Run.
2 In the Simulation tab, under Review Results, select Data Inspector.
3 In the Simulation Data Inspector navigation pane, select BrakeAssertion.

The results show that the assertion fails at 0.23 seconds.

W BrakeAssertion

Fail 4

Pass b HEHEEH AT H M AR MR MR

LUntested 4

0 01 02 03 04 05 0.6 0.7 0.8 09 1.0

3-63

3 Test Sequences and Assessments

Compare Verification Results with Other Signals
Examine the cause of the failure by plotting the values of the brake and throttle signals.

1 Right-click the throt signal and select Log Selected Signals.
2 Simulate the model.

3 Configure the Simulation Data Inspector with two subplots.

4

In the Simulation Data Inspector navigation pane, select the signals to plot. For the first subplot,
select BrakeAssertion. For the second subplot, select Controller:1 (throttle) and Inputs:3
(brake).

The results show that pressing the brake at 0.2 seconds does not disengage the throttle.

W BrakeAssertion

Fail 4 ey 0 DD DOEEE N PP PR D

Pass J000000000000000 0000000

Untested 4
0 0.1 02 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0

B Controller:1 M Inputs:3
1 U 1 |

0.8 |
0.6 4 ‘
0.4

0.2 -

3-64

Examine Model Verification Results by Using Simulation Data Inspector

Trace Failure Back to the Model

Find the block that produces a verification result by tracing the result from the Simulation Data
Inspector back to the model. In the Simulation Data Inspector navigation pane, right-click
BrakeAssertion and select Highlight in Model. The editor opens the verification subsystem and
highlights the Assertion block.

— A
A==xF
—M B
Brakebfssarion
| Locate Defective Behavior '
See Also

Implies | Assertion | Proof Assumption | sltest.getAssessments

3-65

3 Test Sequences and Assessments

Assess Temporal Logic by Using Temporal Assessments

Hybrid systems with discrete and continuous time behavior can require complex timing-dependent
signal logic. Simulink Test enables you to assess model timing and event ordering by authoring and
including temporal assessments with test cases in the Test Manager.

To work with temporal assessments:

1 Select an assessment template.
2 Enter the assessment conditions.

* Map symbols to model elements, such as signals, time series, or constant.
* View the assessment summary.

Run the test case.

4 Use the results to assess the system under test (SUT) against your requirements.
For example, consider a forced oscillation damping problem that has this requirement:

For a signal S, if the signal magnitude exceeds value P, then within t seconds, it must settle below
value Q and stay below Q for u seconds.

Create a Temporal Assessment

To create a temporal assessment:

1 Create or open a test case in the Test Manager.
2 Navigate to the Logical and Temporal Assessments Editor.
3 Click Add Assessment. These assessment templates are available:

* Logical Assessment Templates

* Bounds Check — Check maximum and minimum bounds for signals and expressions.
¢ Custom — Check if a logical expression holds true for all time steps.
+ Temporal Assessment Template

* Trigger-Response — Check for a signal response when a trigger is detected.

3-66

Assess Temporal Logic by Using Temporal Assessments

Logical Assessments

Bounds check

Check min/max bounds for signals and expressions

@ Custom
Check if a custom expression holds true for all time steps

Temporal Assessments

Trigger-response
I Check for a signal response ence a trigger has been detected

For this example, select Trigger-Response.

< Assessment2 « At any point of time ..
trigger: <empty>
delzy: With no delay ..

response: <empty=

The Trigger-Response template appears. To finish creating the assessment, you define temporal
assessment conditions in the context of the SUT.

Define Temporal Assessment Conditions

A Trigger-response assessment requires a:

* Trigger parameter
* Response parameter
* Optional Delay parameter

For the forced oscillation damping problem:

1 Select whenever is true as the trigger and enter abs(S) > P as the condition. The trigger
condition is the condition pattern after which the response signal is evaluated. The response
condition is triggered when the magnitude of signal S exceeds value P.

2 Select must stay true for at least as the response and enter abs(S) < Q and u as the
condition and min-time respectively. The response condition describes the behavior of the
SUT in response to the trigger condition. The response condition is that the magnitude of signal
S must settle below value Q and stay below Q for at least u seconds.

3 Select with a delay of at most as the delay type and set t as the max-time parameter. The delay
is an optional time interval that starts from a time reference parameter and continues to the
point where the response condition is expected to be satisfied. The delay is at most t seconds.

All time units are seconds.
When you add a symbol as part of a temporal assessment parameter in the Logical and Temporal

Assessments Editor, it is added to the list of symbols as an unresolved symbol. Resolve symbols by
using the Symbols pane in the editor.

3-67

3 Test Sequences and Assessments

Resolve Assessment Parameter Symbols
To resolve a symbol, right-click the symbol. Two options are available:

1 Map to model element - Use the mapping dialog box to map symbols to a signal, parameter, or
block in the SUT.

Test cases

Signal =L 4

Connect ~

| O ~= Signal Builder:1

Select a symbol to map from the drop-down list at the top of the mapping dialog box.

After you finish mapping symbols to model elements, the Symbols pane displays metadata that
corresponds to the model element.

A =
Mame: Signal Buider:1

Path: mForcedCscillationDamping/Signal Builder

Field/Element: <type an expression>

Signals that are mapped to a symbol used by an assessment in the editor are logged when you
run the test case.

If you map a bus or an array to a symbol, use the Field/Element row in the Symbols pane to
select a scalar signal from the bus or array. For example:
* To map a symbol to a bus signal containing a bus element fieldA, enter . fieldA.

* To map a symbol to the signal element that corresponds to index (5,5) in a signal array, enter
(5 ’ 5) .

* To combine both expressions, enter . fieldA(5,5).

2 Map to expression - Assign a scalar constant value or time series object to a symbol.
You can use the simulation output as a variable to map symbols to signals. For example, entering
sltest simout.logsout.get('mySignal') is equivalent to using Map to model element

to map symbols to a signal mySignal. See “Test-Case Level Callbacks” on page 6-115 for more
information.

Review the Temporal Assessment Summary

After you enter the assessment parameters, click the arrow to the left of the assessment description
to view the assessment summary.

» At any point of time, whenever abs(5) = P is true then, with a delay of at most t seconds, abs(5) = Q must stay true
for at least u seconds

3-68

Assess Temporal Logic by Using Temporal Assessments

The Visual Representation pane provides a graphical illustration of a passing case for the
assessment.

View passing and failing cases for the assessment by clicking the Explore Pattern & icon. Select the

type of case you want to view from the drop-down list and click E’ to view different passing and
failing cases.

e true :
TRIGGER T T JRCCER T I

false false 4

Atrising edgel. - At rising edgel eninn
After at most o After at most
tn true
RESPONSE RESPONSE
false false
— mintime— m
L@ New Example Passing Example v _@ New Example Failing Example v

Evaluate the SUT

Run the test case to evaluate the SUT. Temporal assessments are evaluated after simulation by using
logged signal data. Use the test case results to review the SUT against your requirements.

View Assessment Results

View the results of the assessment evaluation from the Results and Artifacts pane of the Test
Manager. Select the test case and click the assessment in the Results tree to open a new
Assessment Result tab. Simulink Test evaluates the assessment and displays the expected behavior
and the actual result of the assessment execution with a description of the assessment failures at
different time steps.

« Error 6 of 10 -

Expected Behavior Actual Result Explanation
Assessment 'Assessment 1’ failed when triggered at 23.4891304347826 s.

e e —-m -
TRIGGER | TRIGGER « Trigger condition "(abs(maa) = 0.5) is true at 23.4891304347826 s
« Expected response condition to be true within 23.4891304347826 s and 24.9891304347826 s.

false.

5 25 28 38 28 25 o ie. witha delay of at most 1.5 s after 'rising edge’ of trigger
At rising adge]) At rising edge] » Expected '(abs(mag) < 0.1) to be true at 24.9318181818182 s for at least 1 s, actual value at
After atmost = aneratmost |4 24.9318181818182 5 s false.

fake

RESPONSE RESPONSE ’

Investigate the SUT behavior using the < and =4 buttons and the textual descriptions at points of
failure.

For a more detailed investigation, expand the Expression Tree to view results for every individual
element of the assessment.

3-69

3 Test Sequences and Assessments

= Assessment1: At any point in Fail T e e e

time, if (abs(mag) > 0.5)
becomes frue then, with a delay of =2 TP 1 11 hid 11 It 1t T J
atmost 1.5 seconds, (abs(mag) < Untested ey s e .S sy %S ey deh o
0.1) must stay true for at least 1 o H 4 [} H 10 12 14 1 13 20 22 2q 28 23 30 32 34
seconds

 if (abs(mag) > 0.5) becomes e

true then, with a delay of at

most 1.5 seconds, (abs(mag) <0.1) ~ F¥s¢ | | ” | | | | | |

must stay true for at least 1 seconds nected

+ (abs(mag) = 0.5) becomes True
e [11 [I 11 (LI 11 |
Faiss
Untested |
0 2 4 5 E 10 12 14 18 12 20 22 24 2% 22 30 32 34
» (abs(mag) = 0.5) True j-ﬂ-“ I I 'I II I I
- [[ll:f[ll_ﬂll—{
Untested
o 2 4 5 E 10 12 14 18 12 20 22 24 2% 22 30 32 34

must stay true for at least 1 seconds

~ with a delay of at most 15 True
d: b:)< 0.1)
seconds, (abs(mag) < 0.1) i | ‘

Uniested
o 2 4 [] 10 1 14 it 12 20 2 24 2 28 30 3 34
+ (abs(mag) < 0.1) must stay True
true for at least 1 seconds | | | | | |
Faise
Uniested
] 2 4 8] 10 12 14 18 12 20 22 21 2% 2 0 2 34
P [LTI (I T I T U T 1
Faise ‘
Uniesies
] 2 4 8] 10 12 14 18 12 20 22 21 2% 2 0 2 34

Use the zoom, pan, and data cursor functionalities to analyze assessment evaluation results in the
Expression Tree.

Link Temporal Assessments to Requirements

If you have a Simulink Requirements license, you can establish traceability between temporal
assessments and requirements by linking assessments to requirements. To create links to
requirements, select the assessment in the Logical and Temporal Assessments Editor and click the
Requirements column to open the Requirement Editor dialog box. See “Link to Requirements” on
page 1-2 for more information.

See Also
“Logical and Temporal Assessment Syntax” on page 3-71

3-70

Logical and Temporal Assessment Syntax

Logical and Temporal Assessment Syntax

Simulink Test provides three logical and temporal assessment templates:
* Logical Assessment Templates

* Bounds Check — Check maximum and minimum bounds for signals and expressions.
* Custom — Check if a logical expression holds true for all time steps.
* Temporal Assessment Template

+ Trigger-Response — Check for a signal response when a trigger is detected.

Logical Assessments

Bounds check

Chieck min/max bounds for signals and expressions

@ Custom
Chieck if a custom expression holds true for all time steps

Temporal Assessments

Trigger-response
I Chieck for a signal response once a trigger has baen detected

el

Bounds Check Assessments

Create bounds check assessments to check if the signals and expressions you test satisfy the
boundary condition patterns you specify for them. Boundary condition pattern templates let you test
if signals and expressions in terms of boundary values that you specify are:

* Always less than (or equal to)

* Always greater than (or equal to)

* Always inside

* Always outside

Trigger-Response Assessments

Create trigger-response assessments to verify a signal response when a trigger is detected. A trigger-
response assessment requires:

* Trigger parameter
* Response parameter
* Optional Delay parameter

The trigger condition is the condition pattern based on which the response signal is evaluated. There
are five trigger condition patterns available:

3-71

3 Test Sequences and Assessments

Trigger Condition Pattern Behavior Available Time
References
E Whenever is true Check the response N/A
signal continuously

whenever the triggering
condition is true.

Becomes true Check the response Rising edge
: signal every time the
triggering condition
becomes true.

—s Becomes true and Check the response Rising edge of trigger
| W stays true for at least |signal every time the or end of min-time
triggering condition
becomes true and stays
true for at least the
interval specified by the
min-time parameter
(in s). You also specify
an additional time
reference parameter at
which to evaluate the
response signal.

- Becomes true and Check the response Rising or falling edge of
I l \... . . .
stays true for at most |signal every time the trigger or end of max -
triggering condition time

becomes true and stays
true for at most the
interval specified by the
max-time parameter
(in s). You also specify
an additional time
reference parameter at
which to evaluate the
response signal.

o Becomes true and Check the response Rising or falling edge of
L. stays true for between |signal every time the the trigger or end of
triggering condition min-time or max-time

becomes true and stays
true between the
interval specified by the
min-time and max-
time parameters. You
also specify an
additional time
reference parameter at
which to evaluate the
response signal.

To complete authoring a trigger-response assessment, you specify the response condition pattern and
the response condition. There are five response condition patterns available:

3-72

Logical and Temporal Assessment Syntax

Response Condition Pattern Behavior

Must be true The response condition pattern
must be true starting from the
time reference parameter to the
delay (if it is defined).

Must stay true for at least The response condition pattern
must stay true for at least the
duration specified by the min-
time parameter.

2

_____ Must stay true for at most The response condition pattern

L8 must stay true for at most the
duration specified by the max -
time parameter.

N Must stay true for between |The response condition pattern

L. must stay true for at least the
duration specified by the min-
time parameter and at most the
duration specified by the max -
time parameter.

P Must stay true until The response condition must
g stay true until the until-

condition parameter becomes
true within the duration
specified by the max-time
parameter.

The delay is an optional time interval starting from the time reference parameter to the point where
the response condition is expected to be satisfied. You can set the delay to a maximum value or
specify a time range in seconds.

Custom Assessments

The custom assessments template allows you to specify logical MATLAB expressions that do not fit in
previous templates. Assessments are meant to evaluate signal properties, so all symbols defined in a
custom template must be mapped to signal data (model element or timeseries or a constant scalar
value).

Logical and Temporal Assessment Conditions

You can enter MATLAB expressions that include these operators as the assessment conditions:

* Logical operators: §, |, and ~

* Relational operators: <, <=, ==, ~=, >=, and >

* Arithmetic operators: +, -, and * (multiplication by scalar constants only)
* Cast operators:

* Floating-point number operators: single and double
* Unsigned integer operators: uint8, uint16, and uint32

3-73

3 Test Sequences and Assessments

* Signed integer operators: int8, int16, and int32
* Logical operator: Logical

The functional forms of the logical, relational, and arithmetic operators are not supported. In addition
to operators, you can also use the abs function to construct assessment conditions.

See Also
“Assess Temporal Logic by Using Temporal Assessments” on page 3-66

3-74

Observers

4 Observers

Access Model Data Wirelessly by Using Observers

4-2

In this section...

“Observer Reference Block” on page 4-3

“Connect Signals or Other Model Data Using an Observer Port Block” on page 4-4
“Trace Observed Items to Model Signals and Objects” on page 4-6

“Simulate a System Model with an Observer Reference Block” on page 4-6

“Verify Heat Pump Temperature by Using Observers” on page 4-7

“Convert Verification Subsystem to an Observer Reference” on page 4-10

Observers allow you to you monitor the dynamic response of your system model while preserving the
system model design and system result integrity. Observers use two types of blocks, Observer
Reference blocks and Observer Port blocks. The Observer Reference block wirelessly links a system
model to an Observer model, which contains verification logic. Inside an Observer model, you use
Observer Port blocks to access data from the system model to drive the verification logic.

Observer Reference block

=

Observer Port

The types of Simulink signals and model data you can observe are:

* Continuous-time and Discrete-time signals
* Zero-order hold signals

* Scalar signals

* Wide signals

Access Model Data Wirelessly by Using Observers

* Nonvirtual bus signals

» Stateflow local data parameters, except locals, parameters, signals, and other data defined in a
Simulink subsystem inside a Stateflow state.

» Stateflow state self activity, except if that activity is in a Simulink subsystem inside a Stateflow
state.

Observer Reference Block

Observer Reference blocks wirelessly link a system model to an Observer model. Observer Reference
blocks can only be at the top level of a system model and do not have input or output ports. You map
your Simulink signals or other model data to the Observer Port blocks that are contained within the
Observer model. Once you map the Observer Port blocks to a signal or data, you can connect the
ports to the verification subsystem within the Observer model. Running your system model also runs
the linked Observer model.

Wireless access allows you to use observers to monitor your system model without causing changes
to the system. Observers allow you to create a clear differentiation between your system design and
verification subsystems.

For your Observer model to simulate, do not:

* Use a library model as an Observer model.
* Include an Observer Reference block within an Observer model.

* Reference the system model that contains the Observer Reference block from the Observer
Reference block.

* Use root-level input ports within an Observer model.
* Generate code from a system model that includes an Observer Reference block.

Add an Observer Reference Block

The Observer Reference block references a separate verification model that you use to verify your
system model. To add an Observer Reference block to your system model, first, in the Simulink
toolstrip, open Apps and click Simulink Test in the Model Verification, Validation, and Test section.
Click Add Observer Reference in the Tests tab. Alternately, right-click the top level of your
Simulink canvas and select Observers > Add Observer Reference here from the context menu. An
Observer Reference block is added to your system model, and an Observer model is created and
opened. You must save the Observer model in a writable folder on the MATLAB path.

Observer

4-3

4 Observers

4-4

Connect an Existing Observer Model

To connect an Observer Reference block to an Observer model that you have already created, first
save your Observer model in a writable folder on the MATLAB path. Next, right-click on the Observer
Reference block and select Block Parameters (ObserverReference).

Block Parameters: Observer =
ObserverReference

This block references the specified model as an Observer model and
contains the binding information for all Observer Ports in the
referenced model.

Parameters

Observer Model name: | <Enter Model Name=> Open

Cancel Help Apply

Enter the name of the Observer model that you want to connect to your system and select Apply.
When you double-click your Observer Reference block, your Observer model opens in a new window.

Create an Observer Model from Signals or Other Model Data

To create an Observer model that is mapped to a signal line or observable object in your model, select
one or more signals or the object that you want to observe. Then, click Add Observer Reference in
the Tests tab. Alternately, right-click on the signal or object and select Observers, the item type to
observe, and New Observer. Simulink creates an Observer model and adds an Observer Reference
block to your system model.

Connect Signals or Other Model Data Using an Observer Port Block
Each Observer model contains one or more Observer Port blocks. After mapping an Observer Port
block to an model object or signal within a system model, the Observer Port block outputs the same

output as its mapped object or signal. A new Observer Port block shows a line through the signal
symbol, signifying that the block is not mapped to any signal or object.

(#) =

Access the Manage Observer Dialog Box

To map an Observer Port block to a signal or object in your system model, open the Manage Observer
dialog box using one of these methods:

* In the Tests tab, click Manage Observer.

* Click the gear in the lower-right corner of the Observer Reference block.

* Right-click the Observer Reference block and select Observers > Manage Observer.

* In the Observer model, double-click an Observer Port block.

Access Model Data Wirelessly by Using Observers

Manage Observer Block ‘sltestHeatpumpExample/Observer’ X

The left panel shows the block hierarchy this Observer block can access. The right panel shows the
hierarchy inside the Observer model. Select an entity in the left panel to observe, or select an Observer
Port in the right panel to reconfigure or delete. Right click on tree nodes for more functions.

Observable |Filter Observable Area - Observer: Filter Observer

v |’ sitestHeatpumpExample [PasltestHeatpumpExample_Observer1
» {Fdelay
» {3DT _fan
» (3 DT_pump
» {3 In1
» {{3In2
» P3| Controller
13 DSM fan temp
L3 DSM pump temp
» [Py Plant =
L3 Time delay sec
L Write1
L Write2
L Write3
» 33 Zero-Order Hold

3

Using the Manage Observer dialog box you can:

+ Filter and select signals and objects for observation
* Add, remove, or configure Observer Port blocks
* Trace signals and objects between observer ports and models

On the left side of the Manage Observer dialog box is the Observable Area panel. The Observable
Area panel displays the block hierarchy and observable data of your model. Observed signals and
data appear bold in the hierarchy.

The right side of the Manage Observer dialog box shows the Observer panel. The Observer panel
displays the block hierarchy, including Observer ports in the Observer Reference block. An Observer
Port block that is mapped to a signal or object appears bold and displays the signal to which it is
attached. Once the Observer Port is mapped to a signal or object, its block icon updates to show that
the Observer Port is attached to a signal or object.

£/ EngineRPM >
Observer Port

To view the full path of an observed object, point to an Observer Port block.

If you change the name of an observed signal or object in your system model, the Observer Reference
block updates the name of the output signal from the Observer Port block. If a signal is not named
and does not have a label, the output of the Observer Port block is set to an empty string.

4 Observers

4-6

Map an Observer Port Block to a Signal or Object

To map a signal or object to an Observer Port block, open the Manage Observer dialog box. In the
Observable Area panel, select the signal or object that you want to observe. To map the signal or
object to a new Observer Port block, double-click the selected item or click the Add New Observer

—

Port icon . To map the signal or object to an existing Observer Port block, select the Observer
Port in the Observer panel and click the Reconfigure Observer Port icon “%. In the Observer model,
you can then connect the output from the Observer Port to a verification subsystem to test your
results.

Trace Observed Items to Model Signals and Objects

You can trace observed items and their observer ports within the Manage Observer dialog box. You
can also trace items between the Manage Observer dialog box and the system model, and between
the system model and the Observer model.

To trace an observed item to its observer port within the Manage Observer dialog box, use one of
these methods:

* Double-click on the ObserverPort item in the Observer panel. The observed item is highlighted in
the Observable Area panel.

* Right-click on the ObserverPort item in the Observer panel and select Show in left panel. The
observed item is highlighted in the Observable Area panel.

To trace an observed item or observer port between the Manage Observer dialog box and the system
model, use one of these methods:

* Right-click on the ObserverPort item in the Observer panel or in the Observable Area panel and
select Show in model. The observed item is highlighted in the model.

* Right-click on the observed signal or object in the system model and select Go to associated
Observer Ports. The associated Observer Ports are highlighted in the Observer model.

To trace an observer port and observed item between the system model and the Observer model, use
one of these methods:

* Right-click on the Observer Port in the Observer model and select Observers > Go to observed
<item type>. The observed signal or object is highlighted in the system model.

* Right-click on the on the observed signal or object in the system model and select Observers >
Go to associated Observer Ports. The associated Observer Ports are highlighted in the
Observer model.

Simulate a System Model with an Observer Reference Block

The Observer model is used to monitor signals in your system model and check that your system
model is running within specified parameters. With or without an Observer Reference block, your
system model simulation results are the same. The Observer Reference block does not affect the
compilation of your system model.

Note Both the system model and Observer model must run in normal simulation mode. Both models
can run at fixed-step or variable-step rate, or one model can run at fixed rate and the other at

Access Model Data Wirelessly by Using Observers

variable rate. The two models can also use the same or different solvers. See “Choose a Solver”
(Simulink).

Verify Heat Pump Temperature by Using Observers

This example shows how to use an Observer Reference block to wirelessly observe signals and verify
results. In this system, the plant is modeled using Simulink, and the controller is modeled using
Stateflow. The goal of the example is to monitor both the temperature of the heat pump and when the
pump is cooling or heating the room. The direction in which the fan is blowing indicates cooling or
heating. The data name is pump_dir, and it is connected to port 3 in the Stateflow chart.

1 Open the sltestHeatpumpExample model.

cd(fullfile(docroot, 'toolbox', 'sltest', 'examples'))
open_system('sltestHeatpumpExample')

4 Observers

sltestHeatpumpExample
® 4« thesﬂﬂeatpumpExarnple 3
delay delay

3] delay .

Time delay sec Write1
=
DeltaT_fan DeltaT_fan

DT _fan
DSM fan temp - Write2
[] — E—
DeltaT_pump DeltaT _pump
OT_pump .
DSM pump temp Write3
@—P Tset r— | control_in
In1
mntrnl_uut o Truum
—] Troom_in @—b Toulside
In2
Controller Plant
Zero-Order
Hold
J_"L n
-H .
Copyright 1990-2014 The MathWorks, Inc.

b

2 In the Apps tab, click Simulink Test in the Model Verification, Validation and Test section. The
Tests tab opens

3 Create an Observer model to measure the temperature of the pump.

In the Tests tab, click Add Observer Reference. Simulink adds an Observer Reference block to
your system model and creates an Observer model called
sltestHeatpumpExample Observerl.

4 Add and map an Observer Port block.

4-8

Access Model Data Wirelessly by Using Observers

Open the Plant subsystem and right-click the signal T. Select Observers > Observe selected
signals > sltestHeatpumpExample/Observer (sltestHeatpumpExample Observerl). The
Observer model adds an Observer Port block that is mapped to signal T. Save the new Observer
model in a writable folder.

5 Add and map another Observer Port block.

In the Observer model, in the Tests tab, click Add Observer Port. Double-click the new
Observer Port to open the Manage Observer dialog box. In the Observer panel, the second
Observer Port, ObserverPort]l, is listed below the first port.

To map ObserverPortl to the Simulink data pump_dir, click ObserverPortl. In the
Observable Area panel, expand Controller and controller chart, and select Outport3.
Click the Reconfigure icon “%&. The ObserverPort1 name updates to ObserverPortl
(controller chart:3).

Manage Observer Block ‘sitestHeatpumpExample/Observer’

The left panel shows the block hierarchy this Observer block can access. The right panel shows the hierarchy inside the Observer model.
Select an entity in the left panel to observe, or select an Observer Port in the right panel to reconfigure or delete. Right click on tree nodes for
more functions.

Observable Area: Filter Observable Area Observer: Filter Observer

v |’ sitestHeatpumpExample v |’ sitestHeatpumpExample_Observer1
» :(}delay 3 ObserverPort (T)
» {3DT _fan 3 ObserverPort1 (controller_chart:3)
» (3 DT_pump
» {3 In1
» {{3In2
¥ || Controller —
= Outport1 -+
» P Tset
» 3 Troom_in
» {3 Bus Creator
v [Fjcontroller_chart

= Outport1

= Outport2
1% Outport3

» (JIDLE

» [JRUNNING

{3 control out v @

The Observer Port blocks are in the Observer model and are now mapped and ready to be
connected to scopes or a verification subsystem.

4-9

4 Observers

[EJ sltestHeatpumpExample_Observerl v

Convert Verification Subsystem to an Observer Reference

Converting a Verification Subsystem to an Observer Reference block is a way to declutter a system
model. Select the subsystem to convert and, in the Tests tab, click Send to Observer. Alternately,
right-click the verification subsystem and select Observers > Move selected block to Observer >
New Observer. This operation cannot be undone.

This model contains the Verification Subsystem, Safety Properties.

|E| sitestBasicCruiseControlHarmessModel #

Simulink Test Basic Cruise Control Verification

Shaet1 Actual_speed
Switches_enable
- throt 1]-
/\ Switches_brake throt
» InBus
Switches_set
Switcheas_inc target @
target
Switches_d
s e _ Controller
Inputs Size-Type

Throttle_Out _,

3

Safety Properties

Copyright 2006-2018 The MathWorks, Inc.

4-10

Access Model Data Wirelessly by Using Observers

By converting the Safety Properties Verification Subsystem to an Observer Reference block, you
remove the signals that link the verification subsystem to the system model while preserving the
ability to test the integrity of the system.

@sltﬁtﬂasie{mise{nntruma messModel P

Shaet1

/\
L

Actual speed
Switches_anable
Switches_brake
Switches set

Swilchas_inc

Switches_dec

Inputs

g

Safety Properties

Simulink Test Basic Cruise Control Verification

Size-Type

g InBus

throt

target

throt @
throt
et »(2)

Controller

Copyright 2006-2018 The MathWaorks, Inc.

The two signals, throt and outputl, are automatically mapped to two Observer Port blocks in the
Observer model, sltestBasicCruiseControlHarnessModel Observerl.

}— ."‘ e

Obserer Port

|: o Kx cutput]

Observer Portl

Throttle_Owut

Safety Properties

4-11

4 Observers

See Also
Observer Port | Observer Reference

4-12

Test Harness Software- and Processor-
in-the-Loop

» “SIL Verification for a Subsystem” on page 5-2
» “Use SIL/PIL to Verify Generated Code from an Earlier Release” on page 5-6

* “Import Test Cases for Equivalence Testing” on page 5-14
“Test Integrated Code” on page 5-22

5 Test Harness Software- and Processor-in-the-Loop

SIL Verification for a Subsystem

5-2

In this section...

“Create a SIL Verification Harness for a Controller” on page 5-2
“Configure and Simulate a SIL Verification Harness” on page 5-4
“Compare the SIL Block and Model Controller Outputs” on page 5-4

This example shows subsystem verification by ensuring the output of software-in-the-loop (SIL) code
matches that of the model subsystem. You generate a SIL verification harness, collect simulation
results, and compare the results using the simulation data inspector. You can apply a similar process
for processor-in-the-loop (PIL) verification.

With SIL simulation, you can verify the behavior of production source code on your host computer.
Also, with PIL simulation, you can verify the compiled object code that you intend to deploy in
production. You can run the PIL object code on real target hardware or on an instruction set
simulator.

If you have an Embedded Coder license, you can create a test harness in SIL or PIL mode for model
verification. You can compare the SIL or PIL block results with the model results and collect metrics,
including execution time and code coverage. Using the test harness to perform SIL and PIL
verification, you can:

* Manage the harness with your model. Generating the test harness generates the SIL block. The
test harness is associated with the component under verification. You can save the test harness
with the main model.

* Use built-in tools for these test-design-test workflows:

* Checking the SIL or PIL block equivalence
* Updating the SIL or PIL block to the latest model design
* View and compare logged data and signals using the Test Manager and Simulation Data Inspector.

This example models a closed-loop controller-plant system. The controller regulates the plant output.

Create a SIL Verification Harness for a Controller

Create a SIL verification harness using data that you log from a controller subsystem model
simulation. You need an Embedded Coder license for this example. Another way to create a SIL
harness is with the Create Test for Model Component Wizard (see “Generate Tests for a Component”
on page 6-21 and “Create and Run a Back-to-Back Test” on page 6-27).

1 Open the example model by entering
rtwdemo sil block

at the MATLAB command prompt,

SIL Verification for a Subsystem

| rtwdema_sil_block » -
Outl g |:|
#In1
Scope
QOut2
Plant
L1 double M Ot - ln.'1 - single
Cutl
single2double doubleZsingle
Controller
Copyright 2004-2013 The MathWorks, Inc.

¥ 100% ode3

Save a copy of the model using the name controller model in a new folder, in a writable
location on the MATLAB path.

Enable signal logging for the model. At the command prompt, enter

set param(bdroot, 'SignallLogging', 'on', 'SignalLoggingName’, ...

'SIL signals', 'SignalLoggingSaveFormat', 'Dataset')

Right-click the signal into Controller port In1, and select Properties. In the Signal Properties
dialog box, for the Signal name, enter controller _model input. Select Log signal data
and click OK.

Right-click the signal out of Controller port Outl, and select Properties. In the Signal
Properties dialog box, for the Signal name, enter controller model output. Select Log
signal data and click OK.

Simulate the model.
Get the logged signals from the simulation output into the workspace. At the command prompt,
enter

out _data = out.get('SIL signals');
control inl = out data.get('controller model input');
control outl = out data.get('controller model output');

Create the software-in-the-loop test harness. Right-click the Controller subsystem and select Test
Harness > Create Test Harness (Controller).

Set the harness properties:

* Name: SIL harness
* Sources and Sinks: Inport and Qutport
* Select Open harness after creation

5-3

5 Test Harness Software- and Processor-in-the-Loop

* Advanced Properties - Verification Mode: Software-in-the-loop (SIL)

Click OK. The resulting test harness has a SIL block.

siL Outt

B s

Controller
Signal spec Signal spec.
and routing and routing

Configure and Simulate a SIL Verification Harness

Configure and simulate a SIL verification harness for a controller subsystem.

1

Configure the test harness to import the logged controller input values. From the top level of the
test harness, in the model Configuration Parameters dialog box, in the Data Import/Export
pane, select Input. Enter control inl.Values as the input and click OK.

Enable signal logging for the test harness. At the command prompt, enter
set param('SIL harness', 'SignallLogging','on','SignallLoggingName’, ...
"harness _signals', 'SignallLoggingSaveFormat', 'Dataset')

Right-click the output signal of the SIL block and select Properties. In the Signal Properties
dialog box, for the Signal name, enter SIL block out. Select Log signal data and click OK.

Simulate the harness.

Compare the SIL Block and Model Controller Outputs

Compare the outputs for a verification harness and a controller subsystem.

1

In the test harness model, in the Review Results section, click Data Inspector ! to open the
Simulation Data Inspector.

In the Simulation Data Inspector, click Import. In the Import dialog box.

* Set Import from to: Base workspace.

* Set Import to to: New Run.

* Under Data to import, select Signal Name to import data from all sources.
Click Import.

Select the SIL block out and controller_model out signals in the Runs pane of the data
inspector window.

The chart displays the two signals, which overlap. This result suggests equivalence for the SIL
code. You can plot signal differences using the Compare tab in SDI, and perform more detailed
analyses for verification. For more information, see “Compare Simulation Data” (Simulink).

SIL Verification for a Subsystem

Runs Comparisons

+
~ Run 1: Imported_Data

Values
Values —
| SIL_block_out

OETTE . -
e

controller_model_input

Name controller_model_o -
Line —

Units

Model controller_model 20
Block Name Controller

Block Path controller_model/C...

Port 1 0
Dimensions 1

] 1 2 2 4 5 [7 3] 10

Close the test harness window. You return to the main model. The badge " on the Controller
block indicates that the SIL harness is associated with the subsystem.

See Also

More About

“Control Generation of Functions for Subsystems” (Simulink Coder)
“Configure and Run SIL Simulation” (Embedded Coder)

“Use SIL/PIL to Verify Generated Code from an Earlier Release” on page 5-6
“Create and Run a Back-to-Back Test” on page 6-27

3-5

5 Test Harness Software- and Processor-in-the-Loop

Use SIL/PIL to Verify Generated Code from an Earlier Release

For an atomic subsystem, you can use SIL/PIL simulation in the current release to verify code that
was generated for that subsystem in a previous release. You do not have to regenerate the code,
which saves test harness generation time. You cannot reuse generated code for test harnesses for
whole models or Model Reference blocks.

Note You must have an Embedded Coder license to reuse generated code from an earlier release.

Reuse Generated Code

In an earlier release, if you created a test harness that generated code and verified it using SIL/PIL,
you can reuse that code, rather than regenerating it, in the current release. To reuse generated code,
you must know the location of the folder that contains the code. The steps for reusing generated code
and verifying it using SIL/PIL are:

1 Right-click an atomic subsystem in your model and select Test Harness > Create for
‘<subsystem_name>'.
2 In the Advanced Properties tab of the Create Test Harness dialog box:
* Set Select Verification Mode to Software-in-the-Loop (SIL) or Processor-in-the-
Loop (PIL).
* Select Use generated code to create SIL/PIL block.

* In the Build folder text box, enter the full path to the folder that contains the previously
generated code.

Click OK to create the test harness using the generated code.

Create another normal or SIL/PIL mode test harness for the model that does not use generated
code.

Create a test case and run the test.

6 Analyze the test results and verify that the results match the results produced by the same code
in the earlier release.

To use previously generated code verified using a SIL/PIL subsystem programmatically, use the
ExistingBuildFolder property of sltest.harness.createor sltest.harness.set to
specify the location of the generated code.

SIL Verification of a Subsystem using Code Generated from an Earlier
Release

This example shows how to use code that was generated in a previous release to verify that the model
in the current release continues to work as expected. In the current release you can create a test
harness using the previously generated code, rather than having to regenerate it.

The model in this example is sldemo fuelsys, which represents a fuel control system for a gasoline
engine. The subsystem under test is the fuel rate control subsystem. A normal mode simulation
in the current release is compared to a SIL mode simulation from an earlier release.

Use SIL/PIL to Verify Generated Code from an Earlier Release

Open the Fuel Control System Model

sldemo_fuelsys

Fault-Tolerant Fuel Control System

H 1]

Dashboard

engine_speed

Engine Speed

Open the Dashboard subsystem to simulate any combination of sensor failures.

throttle_sw I d
throttle
Thrattle Angle -
Fault Switch Throttle_Angle_Selector
spead_sw >
spaad

Engine Speed
Fault Switch

Engine_Speed_Selector|

|
1
-

Convert |

Bgo_SW

>
i

i

EGO Fault Switch

iz 02 \Voltage_Selactor

g0

sensors fuel_rate

p—
W3S i) i

| enigine speed o2_out

— | throttle angle MAP
Gl (BT imar}
(b . .
| Convert o el airffuel ratic
[fuel o (T 41}
To Plant

-

map_sw

% Yy y¥r I. Yy yy

MAP Fault Switch

To Controller

fual_rate_control

Engine Gas Dynamics

fuel air_fusl_ratio

Yy

=

Create the Normal Test Harness and Select the Signal to Log

| " sldemo_fuelsys_hamess_normal B

1)

v,

Sensors

>

Sensors fuel_rate

Signal spec.
and routing

fuel_rate_control

Signal spec.
and routing

fuel rate

Copyright 1930-2017 The MathWoarks, Inc.

1. Right-click the fuel rate control subsystem and select Test Harness > Create for
'fuel_rate_control'. The Create Test Harness dialog box opens.

2. Change the Name of the harness to sldemo fuelsys harness normal and click OK to create
the normal mode harness.

5-7

5 Test Harness Software- and Processor-in-the-Loop

3. Select the signal exiting the subsystem in the test harness. Pause on the ellipsis to open the action

bar and select Enable Data Logging.

—bP zensors fuel_rate

fuel_rate

Signal spec.
and routing

fuel_rate_contral
4. Close the sldemo_fuelsys harness normal harness. You do not need to explicitly save the
harness.
Create the SIL Test Harness and Select the Signal to Log

1. Right-click the fuel rate control subsystem again and select Test Harness > Create for
'fuel_rate_control' to open the Create Test Harness dialog box.

2. Change the Name of the harness to sldemo fuelsys harness sil.

3. On the Advanced Properties tab, set the harness as a SIL harness that verified code generated in

an earlier release.

Change the Verification Mode to Software-in-the-Loop (SIL).
Select Use existing generated code to create SIL/PIL block.

In Build folder, enter fuel rate control ert rtw, which is the name of the folder that
contains the code verified using the SIL subsystem in the earlier release.

Use SIL/PIL to Verify Generated Code from an Earlier Release

Create Test Harness X
i

Specify the properties of the test harness. The component under test is the system for which the
harness is being created. After creation, use the block badge to find and open harnesses.

Component under Test: sldemo_fuelsys/fuel_rate_control

Basic Properties ~ Advanced Properties Description
Harness Creation Options

Verification Mode: 'Software-in-the-Loop (SIL) v
Use existing generated code to create SIL/PIL block

Build folder: |fuel rate control_ert rtw Browse ...

Post-create callback method

Harness Rebuild Options
] Rebuild harness on open

[[] Update Configuration Parameters and Model Workspace data on rebuild

Post-rebuild callback method

Harness Component Synchronization Options

Synchronization Mode Synchronize only during rebuild

J Cancel Help

4. Click OK to create the SIL harness.

5 Test Harness Software- and Processor-in-the-Loop

5-10

@ sldemo_fuelsys_harness_sil P

1) sensors SIL fuel rate

Sensors fuel_rate

Signal spec. Signal spec.
and routing fuel_rate_control and routing

5. Select the signal exiting the subsystem in the test harness. Pause on the ellipsis to open the action
bar and select Enable Data Logging.

Create an Equivalence Test Case

1. Use sltestmgr to open the Test Manager.

N

. Click New > Test File. Right-click on the test file and change its name to SIL reuse.
. Delete New Test Case 1.

3
4. Highlight New Test Suite 1 and click New > Equivalence Test.

(@3]

. Change the name of New Test Case 1toSIL equivalence test case.

[=2]

. In the System Under Test section for Simulation 1,

=

Set the Model to sldemo fuelsys.
Under Test Harness > Harness, select sldemo fuelsys harness normal.

W N

Under Simulation Settings Overrides, select Stop Time and set it to 10.

Use SIL/PIL to Verify Generated Code from an Earlier Release

Model: | sldemo_fuelsys
+ TEST HARNESS

Hamess sldemo_fuelsys _harness_normal

= SIMULATION SETTINGS OVERRIDES
Simulation Mode: | [Model Settings]

Start Time: |0

v | Stop Time: | 10

7. For Simulation 2,

=

Set the Model to sldemo fuelsys.

W N

Under Test Harness > Harness, select sldemo fuelsys harness sil.
Under Simulation Settings Overrides, select Stop Time and set it to 10.

* SIMULATION 2 Copy settings from Simulation 1

» SYSTEM UNDER TEST

Model: sldemo_fuelsys

ST HARN

cg

Harness. | sldemo_fuelsys_harness_sil

- SIMULATION SETTINGS OVERRIDE

w

Simulation Mode: [Model Settings]

Start Time: 0

+ Stop Time: | 10

Specify the Harness Inputs

For both simulations, in the Inputs sections, click Add and, in the Add Input dialog box, in the File
field, enter harnessInputs.mat. Click Map Inputs and then click Add to set up the inputs.

5-11

5 Test Harness Software- and Processor-in-the-Loop

Add Input ? X

INPUT FILE SPECIFICATION

File: | harnessinputs mat []

Add iterations to run this input
» INPUT MAPPING

Mapping Mode: | Block Name ‘ - m

v Compile the system under test
» MAPPING STATUS
» ADVANCED

Run the Test and View the Output and Results

Click Run to run the equivalence test. In the Results and Artifacts pane, expand Equivalence
Criteria Result to view the output.

Results and Artifacts Y testcase X M Start Page % _E, SIL equivalence test case % E Comparison

‘Fiher results by name or tags, e g tags B T *

NAME STATUS

W fuel_rate_control:1 (Baseline) M fuel_rate_control:1 (Sim Output) M Tolerance
~ Results: 2019-Dec-05 12:19:27 10

v _@ SIL equivalence test case o

(]
- .1.;; Equivalence Criteria Result Q

(® fuel_rate_control 1 (]
» [[&l Verify Statements 1] 2
3 E Sim Qutput 1 (sldemo_fuelsys :

» Sim Output 2 (sldemo_fuelsys 09

1 2 3 1 5 £ 7 8 3

M Tolerance M Difference

PROPERTY VALUE

Name ; fuel_rate_control:1

Status [0

Absolute Tolerance 0

Relative Tolerance 0.00%

Leading Tolerance 0 1

Lagging Tolerance 0 v 1 2 3 1 5 6 7 H 9 10

The upper plot shows the output of both test harnesses. The lower plot shows that the difference
between fuel_rate_control:1 (Baseline) and fuel _rate_control:1 (Sim OQutput) is zero. This
difference means that the two results plots match exactly. This matching indicates that the code

5-12

Use SIL/PIL to Verify Generated Code from an Earlier Release

verified using SIL from the earlier release and the code generated in the current release produce the
same results.

See Also
crossReleaseImport | sltest.harness.create|sltest.harness.set

More About

. “Create Test Harnesses and Select Properties” on page 2-12
. “SIL Verification for a Subsystem” on page 5-2

5-13

5 Test Harness Software- and Processor-in-the-Loop

Import Test Cases for Equivalence Testing

5-14

You can use the SIL/PIL Manager app in Embedded Coder to export test cases to the Test Manager.
By using the app to export software-in-the-loop (SIL) or processor-in-the-loop (PIL) test cases, you do
not have to write complicated test scripts for back-to-back testing.

Note You need both Simulink Test and Embedded Coder to use this feature.

Using Export to Test Manager in the SIL/PIL Manager app in Automated Verification mode
exports a test case with two simulations, each in a different simulation mode. For back-to-back
testing, you usually use Normal mode and SIL mode or Normal mode and PIL mode. When you export
from the app, the Test Manager opens with the new equivalence test case in the Test Browser pane. If
you export to a new test file, the Test Browser opens with a new test file and a new test suite for the
test case. The test case includes a panel for each simulation (SIMULATION 1 and SIMULATION 2).
See SIL/PIL Manager and “SIL/PIL Manager Verification Workflow” (Embedded Coder) for
information on how to use the app to export a test case.

Settings for Test Case Simulations

The System Under Test in the SIL/PIL Manager app determines the settings for the test case
simulations in the Test Manager. These settings for each type of system under test are described for
exporting a test case that includes a SIL mode simulation. For a test that includes a PIL mode
simulation, the settings are the same for each type of system under test.

» “Top-Level Model” on page 5-14

* “Model Block in SIL/PIL Mode” on page 5-15

* “Model Block in a Test Harness” on page 5-16

Top-Level Model

When the system under test is a Top model, the exported test case tests the entire model. The Test
Harness field in Test Manager is blank.

Before exporting the test case, these settings are in the SIL/PIL Manager app.

System Under Test Top model
Simulation Mode Normal
SIL/PIL Mode Software-in-the-Loop (SIL)

After exporting the test case, these settings are in the Test Manager for SIMULATION 1.

Property Setting Location in Test Manager

Model Top model SIMULATION 1 > SYSTEM
UNDER TEST

Simulation mode Normal SIMULATION 1 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Import Test Cases for Equivalence Testing

Property

Setting

Location in Test Manager

Override model blocks in
SIL/PIL to normal mode

Selected

To run the simulation in Normal
mode, model blocks set to
SIL/PIL mode are overridden.

SIMULATION 1 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

After exporting the test case, these settings are in the Test Manage

r for SIMULATION 2.

Property

Setting

Location in Test Manager

Model

Top model

SIMULATION 2 > SYSTEM
UNDER TEST

Simulation mode

Software-in-the-Loop
(SIL)

SIMULATION 2 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Override model blocks in
SIL/PIL to normal mode

Not selected

The model blocks set to SIL or
PIL mode run in SIL or PIL
mode, respectively.

SIMULATION 2 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Model Block in SIL/PIL Mode

When the system under test is Model blocks in SIL/PIL mode, the exported test case is a Model
reference block in SIL or PIL simulation mode. The Test Harness field in Test Manager is blank.

Before exporting the test case, these settings are in the SIL/PIL Manager app.

System Under Test

Model blocks in SIL/PIL mode

Top Model Mode

Normal

After exporting the test case, these settings are in the Test Manager for SIMULATION 1.

SIL/PIL to normal mode

Property Setting Location in Test Manager

Model Top model SIMULATION 1 > SYSTEM
UNDER TEST

Simulation mode Normal SIMULATION 1 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Override model blocks in Selected SIMULATION 1 > SYSTEM

To run the simulation in Normal
mode, model blocks set to

SIL/PIL mode are overridden.

UNDER TEST > SIMULATION
SETTING OVERRIDES

After exporting the test case, these settings are in the Test Manager for SIMULATION 2.

5-15

5 Test Harness Software- and Processor-in-the-Loop

The system under test runs in
SIL or PIL mode as set in the
SIL/PIL Manager app. Other
blocks run in Normal mode.

Property Setting Location in Test Manager

Model Top model SIMULATION 2 > SYSTEM
UNDER TEST

Simulation mode Normal SIMULATION 2 > SYSTEM

UNDER TEST > SIMULATION
SETTING OVERRIDES

Override model blocks in
SIL/PIL to normal mode

Not selected

The model blocks set to SIL or
PIL mode run in SIL or PIL
mode, respectively.

SIMULATION 2 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Model Block in a Test Harness

When the system under test is a Model reference block in a test harness, the exported test case is
that Model reference block in SIL or PIL simulation mode. Use the SIL/PIL Manager app from within

the test harness.

Before exporting the test case, these settings are in the SIL/PIL Manager app.

System Under Test

Name of Model block in the test harness. This
field is not editable because you cannot change
an entire harness to SIL/PIL mode.

Simulation Mode

Normal

SIL/PIL Mode

Software-in-the-Loop (SIL)

After exporting the test case, these settings are in the Test Manager for SIMULATION 1.

Property Setting Location in Test Manager

Model Model block name SIMULATION 1 > SYSTEM
UNDER TEST

Harness Harness name SIMULATION 1 > SYSTEM

UNDER TEST > TEST
HARNESS

SIL/PIL to normal mode

To run the simulation in Normal
mode, Model blocks set to

SIL/PIL mode are overridden.

Simulation mode Normal SIMULATION 1 > SYSTEM
UNDER TEST > SIMULATION
SETTING OVERRIDES

Override model blocks in Selected SIMULATION 1 > SYSTEM

UNDER TEST > SIMULATION
SETTING OVERRIDES

After exporting the test case, these settings are in the Test Manager for SIMULATION 2.

5-16

Import Test Cases for Equivalence Testing

Property Setting Location in Test Manager

Model Model block name SIMULATION 2 > SYSTEM
UNDER TEST

Harness Harness name SIMULATION 2 > SYSTEM

UNDER TEST > TEST
HARNESS

Simulation mode

Software-in-the-Loop

SIMULATION 2 > SYSTEM

SIL/PIL to normal mode

The Model blocks set to SIL or

(SIL) UNDER TEST > SIMULATION
SETTING OVERRIDES
Override model blocks in Not selected SIMULATION 2 > SYSTEM

PIL mode run in SIL or PIL

mode, respectively.

UNDER TEST > SIMULATION
SETTING OVERRIDES

Back-to-Back Testing a Model Using the SIL/PIL Manager App

This example shows how to perform back-to-back testing with a test case exported from the
Embedded Coder SIL/PIL Manager app. The test case compares a model simulated in Normal mode
and in Software-in-the-Loop (SIL) mode.

1 Open the rtwdemo mdlreftop model.

open_system('rtwdemo mdlreftop')

rtwdemo_mdirefbot
upper

upper

L rtwdemo_mdirefbot

L rtwdemo_mdIrefbot
upper

ﬁ ﬁ » input output *IEI ﬁ ﬁ —» input output |—» ﬁ ﬁ | input output | J
e | EEngN e
Pulse ScopeA Pulse ScopeB Pulse
(Ts=0.1) Iojwer (Ts=0.5) Iujwer (Ts=1.0) Iojwer
i 2
0 | I CounterA . CounterB CounterC
Generate Code Using Generate Code Using
Simulink Coder Embedded Coder
(double-click) (double-click)

Copyright 1994-2019 The MathWorks, Inc.

Note Steps 2 through 4 apply specifically to this rtwdemo _mdlreftop model. These steps
might not be needed for other models.

2 For this model, click Signal Table in the Simulation tab. Select Test Point and Log data for the
CounterA, CounterB, and CounterC signals.

5-17

ScopeC

5 Test Harness Software- and Processor-in-the-Loop

Model Data Editor

Inports/Outports Signals Data Stores States Parameters
=

sa | @

Instrumentation ~

~

"= CounterA
"= CounterB
"= CounterC
"= Pulse (Ts=0.1)

] L] K] K] [
| [& K] K]

3 Right-click in the model and select Model Configuration Parameters. In the Configuration
Parameters dialog box,

* In Data Import/Export, set the Format to Dataset.
* In Code Generation > Interface, select signals in the Generate C API for section.

Click OK.

4 Right-click of the Model blocks and select Open as Top Model. In the Configuration Parameters
dialog book, set the same items as in Step 3.

5 Expand the Apps tab in the model window and click SIL/PIL Manager under Code Verification,
Validation, and Test.

DEBUG MODELING FORMAT APPS I

Search
MODEL VERIFICATION, VALIDATION, AND TEST

B * B* O = &

Requirements Requirements Model Clone Modg
Viewer Manager Advisor Detector Transfor|
-~ N N
Design Simulink
Verifier Test

CODE VERIFICATION, VALIDATION, AND TEST

= ~ LA oop
[[
SIL/PIL Code Polyspace FIL HDL
Manager Inspector Code Verifier Wizard Cosimul

6 In the SIL/PIL Manager toolstrip, if they are not already selected, select

* Automated Verification

* System Under Test — Top Model

* Simulation Mode — Normal

* SIL/PIL Mode — Software-in-the-Loop (SIL)

5-18

Import Test Cases for Equivalence Testing

7 To export the test case, expand Compare Runs and click Export to Test Manager.

8

9

SIMULATION DEBUG MODELING FORMA
6 System Under Test | Top model -
Simulation Mode MNarmal -
Automated
Verification + @ SIL/PIL Mode Software-in-the-Loop (SIL) ~
MODE PREPARE

& ¥
Run Compare
= Verification Runs =

NUMERICAL EQUIVALENCE RESULTS

¥ h
Compare Data
Runs Inspector

EXECUTION PROFILING RESULTS

COVERAGE ANALYSIS RESULTS

e

Results
Explorer

SIMULINK TEST

>

L=
Export to Test

Manager

In the Export SIL/PIL Test Cases dialog box, use the default values and click OK. The Test

Manager opens.

In the Test Manager, to see the imported test case and settings, expand
rtwdemo _mdlreftop TestFile and SIL/PIL Test Suite in the Test Browser.

Results and Artifacts

Filter tests by name or tags, e g. tags: test

* =] rtwdemo_mdireftop_TestFile
~ SIL/PIL Test Suite
|Z] SIL/PIL Equivalence test

5-19

5 Test Harness Software- and Processor-in-the-Loop

10 Select the SIL/PIL Equivalence test case. To see the settings for the simulation modes,
expand the SIMULATION 1 and SIMULATION 2 sections. The expanded SIMULATION 1

section is

» SIMULATION 1

»* SYSTEM UNDER TEST

Model: | rtwdemo_mdIireftop
» TEST HARNESS

» SIMULATION SETTINGS OVERRIDES

Simulation Mode: | Normal

Start Time: 0
Stop Time: 10
Initial State:

%y aAC

v | Override model blocks in SIL/PIL mode to normal mode

11 Open the Equivalence Criteria section and click Capture. The model simulates and the section

lists the signals to compare in the test case.

v EQUIVALENCE CRITERIA

| SIGNAL NAME
v CounterA:1
v CounterB:1

«'| CounterC:1

0.00%
0.00%
0.00%

.«
W Capture... Delete

5-20

12 Click Run to run the test case.

13 In the Test Manager, the Results and Artifacts panel shows the pass/fail results. A Code

Generation Report opens in a separate window.
14 Select one or more signals to plot the results.

Import Test Cases for Equivalence Testing

Test Browser [EECERRPNTEE =] SILPIL Equivalence test » [ff} StartPage x [Comparison x| Visualize

Filter results by name or tags, e.g. tags: test g B CounterA-1 M CounterA-1
NAME STATUS
~ Results: 2019-Jun-21 14:51:59 10 50
+ |=| SIL/PIL Equivalence test]
- ,JE. Equivalence Criteria Result /]
CounterA:1 Qo ©
CounterB:1 [}
CounterC:1 L] “
~ 4 Sim Output 1 (rtwdemo_mdirefi
+| CounterA:1 = e
CounterB:1 —
CounterC:1 30
~ P Sim Output 2 (twdemo_mdireft
~ CounterA:l — 35
CounterB:1 —
CounterC:1 — .
3
PROPERTY VALUE 15
Name ' CounterA:1
Block Path riwdemo_mdlreftop/CounterA
Interp Method zoh i
Sync Method union
Units 5
Sample Time 0.1
Data Type double
0

The plot shows that the outputs from the two simulations are the same.

See Also

More About
. SIL/PIL Manager
. “SIL/PIL Manager Verification Workflow” (Embedded Coder)

. “Code Verification Through Software-in-the-Loop and Processor-in-the-Loop Execution”
(Embedded Coder)

5-21

5 Test Harness Software- and Processor-in-the-Loop

Test Integrated Code

5-22

In this section...

“Test Integrated C Code” on page 5-22
“Test Code in S-Functions” on page 5-22

“S-Function Testing Example” on page 5-22

Test Integrated C Code

If you have a model that integrates C code with a C Caller block, you can test the C code with the Test
Manager and a test harness. For an example, see “C Code Verification with Simulink Test”.

The C Caller block uses configuration parameters to define the custom code. If you change the
configuration parameters, synchronize the parameters between the test harness and the model. For
more information, see “Synchronize Changes Between Test Harness and Model” on page 2-46 and
“Create Test Harnesses and Select Properties” on page 2-12.

» Ifyou change the test harness configuration parameters, you can push the configuration set to the
main model. Click Push Changes, or use sltest.harness.push.

* Ifyou change the main model configuration parameters in the main model, and you want to
update the test harness parameters, the test harness must copy the configuration parameters on
rebuild. You can set this property in two ways:

* When you create the test harness, select Update Configuration Parameters and Model
Workspace data on rebuild. You can also select Rebuild Harness on Open, which rebuilds
every time the harness opens.

+ For existing test harnesses, in the harness preview, select one or more of Rebuild Harness >
Rebuild on Open, , or Rebuild Harness without Compiling Model, and Update Harness
Configuration Settings and Model Workspace. The Update Harness Configuration
Settings and Model Workspace option updates the settings every time a rebuild occurs.

Test Code in S-Functions

S-Functions are computer language descriptions of Simulink blocks written in MATLAB, C, C++ or
Fortran. You can test code wrapped in S-Functions using Simulink Test test harnesses. Testing code in
S-Functions can be helpful for regression testing of legacy code and for testing your code in a system
context.

S-Function Testing Example

In this example, you test code in an S-Function block using a test harness. The main model is a
controller-plant model of an air conditioning/heat pump unit. Before you begin, change the default
working folder to one with write permissions.

Note This example works only on a 64-bit Windows® platform.

Test Integrated Code

Set Up the Working Environment
1 Add the example folder to the MATLAB path, and set the example file names.

ep = fullfile(docroot, 'toolbox', 'sltest', 'examples');
addpath(ep);

md
cb
dt

2 Open the model.

'sltestHeatpumpSfunExample.slx!'
'sltestHeatpumpBusPostLoadFcn.mat'
'"PumpDirection.m’

open_system(fullfile(ep,md))

L1 } » Tset

In1 control_out M control_in
—» Troom_in

Troom

Controller_sfcn

. 2 } - Toutside

In2

Plant
Zero-Order

Haold

Jh e

Copyright 1990-2018 The MathWorks, Inc.

In the example model:

» The controller is an S-Function that accepts room temperature and specified temperature inputs.

* The controller output is a bus with signals that control the fan, heat pump, and the direction of the
heat pump (heat or cool).

* The plant accepts the control bus. The heat pump and the fan signals are Boolean, and the heat
pump direction is specified by +1 for cooling and -1 for heating.

The test covers four temperature conditions. Each condition corresponds to one operating state with
fan, pump, and pump direction signal outputs.

Temperature Condition System |Fan Pump Pump

State Command [Command |Direction
|[Troom in - Tset| < DeltaT fan idle 0 0 0
DeltaT fan <= |Troom_in - Tset| < fan only |1 0 0
DeltaT pump

5-23

5 Test Harness Software- and Processor-in-the-Loop

Temperature Condition System |Fan Pump Pump
State Command [Command |Direction

|[Troom in - Tset| >= DeltaT pump and cooling |1 1 -1
Tset < Troom_in

|[Troom in - Tset| >= DeltaT pump and heating |1 1 1
Tset > Troom in

Create a Test Case

1 On the Apps tab, under Model Verification, Validation, and Test, click Simulink Test. Then, on
the Tests tab, click Simulink Test Manager.

2 From the Test Manager toolstrip, click New to create a test file. Name and save the test file.

3

In the test case, under System Under Test, click the i button to load the current model into

the test case.

Create a Test Harness

1 In the model, right-click the Controller sfcn subsystem and select Test Harness > Create
for ‘Controller_sfcn’.
2 Set the harness properties.

In the Basic Properties tab:

* Set Name to test harness 1

* Set Sources and Sinks to None and Scope

3 Click OK to create the test harness.

4 In the test case, under System Under Test, refresh the test harness list and select
test harness_1 for the Harness.

Add Inputs and Set Simulation Parameters
Create inputs in the test harness, with a constant Tset and a time-varying Troom_in.

1 Connect a Constant block to the Tset input and set the value to 75.

2 Add a Sine Wave block to the harness model to simulate a temperature signal. Connect the Sine
Wave block to the conversion subsystem input Troom in.

3 Double-click the Sine Wave block and set the parameters:

Parameter Value
Amplitude 15

Bias 75
Frequency 2*pi/3600
Phase (rad) 0

Sample time 1

Select Interpret vector parameters as 1-D.

5-24

Test Integrated Code

7a

control_out >

Troom_in

Y

Signal spac. Controller_sfcn Signal spec.
and routing and rauting

4 In the Solver pane of the Simulink toolstrip, set Stop time to 3600.
Obtain Baseline Data

1 In the test case, in Simulation Outputs, click Add. Highlight the output bus from the controller

S-Function.
75
Teet
control_out
h]v' Troom_in
Signal spec. Controller_sfen Signal spec.

and routing and routing

In the Signal Selection dialog box, click the Add button.

Under Baseline Criteria, click Capture to record a baseline data set from simulating the test
harness. Save the baseline data set to the working folder. The baseline signals appear in the
table.

5-25

5 Test Harness Software- and Processor-in-the-Loop

~ SIMULATION OUTPUTS*
LOGGED SIGNALS
MAME BLOCK PATH PORT INDEX
* & Signal Set 1

+ |Controller_sfen:l test_harmess_1/Controller_sfcn 1

b
Plot signals on the specified plots after simulation o Add - Delete

OTHER QUTFUTS
Cwerride model settings
States Qutput

Final states Data stores Signal logging

» CONFIGURATION SETTINGS OVERRIDES

* BASELINE CRITERIA*

Include baseline data in test result
SIGMAL MAME ABS TOL REL TOL LEADING TOL AGGING TOL -+

0.00%

= & sfcn_baseline.mat 0
0.00% 0
0
0

& fan_cmd
0.00%

0.00%

+ pump_cmd

(=T =] =T =]
= o [=TR R =T

' pump_dir
o

Run the Test Case and View Results

1 Run the test case. The test results appear in the Results and Artifacts pane.

2 Expand the results to view the baseline criteria result. The baseline test passes because the
simulation output is identical to the baseline data.

5-26

Test Integrated Code

Resulis and Ariifacis a Start Page x @ Mew Test Case 1 x ﬁ Comparison x
|Filter results by name or tags, e.g. tags: test | T BT e LT s T
NAME STATUS H Controller_sfcn:1.pump_dir (Compare To) M Tolerance
+ [E] Mew Test Case 1] - !
~ [z Baseline Criteria Result o
() Controller_sfcn:1.fan_cmd (]
(_) Controller_sfen:1.pump cmd & ¢
@) Controller_sfcn:1 pump_dir (]
3 Sim Output (sltestHeatpumpSfunE -
1 2 -1
o 500 1000 1500 2000 2500 3000 3500
e R— W Difference M Tolerance
Mame Controller_sfcn:1.pump... =
Status] 1
Absolute Tolerance 0
Relative Tolerance 0.00%
Leading Tolerance 0
Lagging Tolerance 0 °
Block Path test_harmess_1/Controller_. ..
Port 1
Interp Method zoh -1

~ ma s s - [u] 500 1000 1500 2000 2500 2000 3500

5-27

Test Manager Test Cases

* “Manage Test File Dependencies” on page 6-2

* “Compare Model Output To Baseline Data” on page 6-7

* “Creating Baseline Tests” on page 6-10

* “Test a Simulation for Run-Time Errors” on page 6-13

* “Automatically Create a Set of Test Cases” on page 6-16

* “Generate Tests for a Component” on page 6-21

* “Create and Run a Back-to-Back Test” on page 6-27

* “Testing AUTOSAR Compositions” on page 6-32

* “Testing a Lane-Following Controller with Simulink Test” on page 6-37
* “Synchronize Tests” on page 6-49

* “Run Tests Using External Data” on page 6-50

* “Importing Test Data from Microsoft® Excel®” on page 6-54

* “Test Case Input Data Files” on page 6-57

* “Capture Simulation Data in a Test Case” on page 6-68

* “Run Tests in Multiple Releases” on page 6-72

* “Examine Test Failures and Modify Baselines” on page 6-76

* “Create and Run Test Cases with Scripts” on page 6-81

* “Test Iterations” on page 6-85

* “Collect Coverage in Tests” on page 6-94

» “Test Coverage for Requirements-Based Testing” on page 6-100
* “Increase Test Coverage for a Model” on page 6-104

* “Run Tests Using Parallel Execution” on page 6-107

» “Set Signal Tolerances” on page 6-108

* “Test Sections” on page 6-112

* “Increase Coverage by Generating Test Inputs” on page 6-121

* “Process Test Results with Custom Scripts” on page 6-125

* “Create, Store, and Open MATLAB Figures” on page 6-134

* “Test Models Using MATLAB Unit Test” on page 6-137

* “Output Results for Continuous Integration Systems” on page 6-141
» “Filter and Reorder Test Execution and Results” on page 6-145

6 Test Manager Test Cases

Manage Test File Dependencies

6-2

In this section...

“Package a Test File Using Projects” on page 6-2
“Find Test File Dependencies and Impact” on page 6-4
“Share a Test File with Dependencies” on page 6-6

You can help track and manage your test file dependencies by creating a project for your test file and
the files it depends on. Examples of test file dependencies include requirements, data files, callbacks,
test harnesses, and custom criteria scripts. Packaging test file dependencies in a project also helps
you share tests with other users.

Package a Test File Using Projects

In the Test Browser, right-click the test file.
2 Select Project > Create Project from Test File.

Project opens and identifies the file dependencies of the test file. In this example, the test file
contains a test case with a requirements link, an input file, and a baseline file.

Manage Test File Dependencies

Filter tests by name or tags, e g. tags: test

» =] testfile
~ [2] New New '

Bl Save
B Cpenin Tab
[» Run Ctrl+T
|5)» Create Report

& Synchronize

Project » | Create Project from Test File
I

Show in Explarer

Expand All

Collapse All

Enabled

Edit test tags

Convert to 3

¥ Close

3 Specify project name, and verify the list of selected file dependencies.
4 Click Create.

6-3

6 Test Manager Test Cases

6-4

Project name:
Test Package

Project folder:

C:\ » MATLAB » TestPackage
]

Files to include:

External dependencies:

- [@] | Test Package
'HE‘ baselinel.mat
EH baseline.mat
- [V B input.xlsx
; -[¥] & sldemo_absbrake.slx
-0 || sldemo_absbrake slx.bak

O T} T et File.midat

+ More Options

’ Createﬂ[Cancel l’ Help]

Find Test File Dependencies and Impact

You can find test file dependencies from the Test Browser. Your test file must be saved in a Simulink

project.

1 Right-click the test file. Select Project > Find Dependencies.

Manage Test File Dependencies

Results and Artifacts

S
« = TestFile
=[] Testq

[E] Te

New

B Cpenin Tab

[Run
Collapse All

2 Synchronize
Simulink Project
Show in Explarer

Ctrl+T

¥| Show Testfile in Project

c,l:;
=5

=y

2|
| Enabled

Find Dependem:ies{ttl

Remove from Project

=

L

Convert to
X Close

Dependencies are color coded in the file dependency graph.

|27 A

I:' Project: Test Package -|| | e* '.Impact‘u"iew v.|
i[5 Files ' '
[#] Shortcut Management File Type %
% Batch Job MAT-file (2)
Simulink Model (1)
[simulinkTest File (1)
Microsoft Excel Worksheet (1)
|#| Test File.mldatx
||ﬁi] Labels R4
ﬂ Classification
Completed: Analyzing dependencies

Dependency Type

(1) External Input
(2] Baseling s—

(1) System Under Test
Hj baselinel.mat

Eﬂ baseline2.mat

> []

}| & sldemo_absbrake.skx |

Results are shown for a dependency analysis started on Decernber 21, 2015 10:39:19 AM

If you want to change a model or requirement, you can determine the potential impact of the change

on your tests.

6-5

6 Test Manager Test Cases

1 In the dependency graph, select the item that could impact your tests.
2 In the Project toolstrip, click Files > Files Impacted by Selection.

DEPENDEMNCY ANALYSIS .

I &

Select | Find | Export

- - -

[WRAT Al Files

Only Selected Files

i I

All Dependencies of Selection

File Tl Files Impacted by Selection

Files Required by Selection

If you want to run a test file again, then you can right-click the test file in the graph and select Run.
The Test Manager opens the test file and runs the test cases contained in it.

|#| Test File.mldate
Open

Run

[

Remowve from Project

Add Label

Show in Explorer

Remove Label
Extract Conflict Markers to File

Export r

Share a Test File with Dependencies

You can easily share test files that are already saved in a project. If you send the project folder, it
contains the file dependencies for the test file.

See Also

Related Examples
. “What Are Projects?” (Simulink)

6-6

Compare Model Output To Baseline Data

Compare Model Output To Baseline Data

To test the simulation output of a model against a defined baseline, use a baseline test case. In this
example, use the sldemo absbrake model to compare the simulation output to a baseline captured
from an earlier state of the model.

Create the Test Case

1 Open the sldemo_absbrake model.
2 To open the Test Manager from the model, on the Apps tab, under Model Verification, Validation,
and Test, click Simulink Test. Then, on the Tests tab, click Simulink Test Manager.
3 From the Test Manager toolstrip, click New to create a test file. Name and save the test file.
The test file consists of a test suite that contains one baseline test case. They appear in the Test
Browser pane.
4 Right-click the baseline test case in the Test Browser pane, and select Rename. Rename the
test case to Slip Baseline Test.
> o
Under System Under Test in the test case, click the Use current model button to load the
sldemo absbrake model into the test case.
To record a baseline from the system under test, under Baseline Criteria, click Capture.
In the Capture Baseline dialog box, for the file format, select Excel. Specify a location to save
the baseline to and click Capture.
8 The baseline criteria file and the logged signals appear in the table. Set the Absolute Tolerance
of the Ww signal to 15.
SHEETS ABS TIOL REL TOL LEADING TOL LAGGING TOL +
- || abs_baseline xlsx baselinel 0.00% 0 0
V| Ww 15 0.00% 0 0
¥ Vs 0 0.00% 0 0
| Bd] 0.00% 0 0
| slp 0 0.00% 0 0
Tip To add or remove columns in the baseline criteria table, click the column selector button .

For more information about tolerances and criteria, see “Set Signal Tolerances” on page 6-108.

Run the Test Case and View Results

1
2
3

In the sldemo_absbrake model, set the Desired relative slip constant block to 0.22.
In the Test Manager, select the Slip Baseline Test case in the Test Browser pane.
On the Test Manager toolstrip, click Run.

In the Results and Artifacts pane, the new test result appears at the top of the table.

6 Test Manager Test Cases

4 Expand the results until you see the baseline criteria result. Right-click the result and select
Expand All Under.

The signal yout .Ww passes, but the overall baseline test fails because other signal comparisons
specified in the Baseline Criteria section of the test case were not satisfied.

5 To view the yout.Ww signal comparison between the model and the baseline criteria, expand
Baseline Criteria Result and click the option button next to the yout.Ww signal.

- [lz| Baseline Criteria Result
I slp
) yout.Sd
| yout. Vs

® yout Ww

o 9 9 0 ©

The Comparison tab opens and shows the criteria comparisons for the yout .Ww signal and the
tolerance.

M youtWw (Baseline) M yout\Ww (Compare To) M Tolerance

1 2 3 4 5 (-] T :] 9 10 1 12

W Difierence W Tolerance

1 2 3 4 5 8 T 8 a 10 1 12

6 You can also view signal data from the simulation. Expand Sim Output and select the signals
you want to plot.

6-8

Compare Model Output To Baseline Data

~ [Pl Sim Output (sldemo_absbrake
slp —

yout.Sd

v youtVs —

+ | yout. Ww

The Visualize tab opens and plots the simulation output.

W yout'Ww M youtVs

60

For information on how to export results and generate reports from results, see “Export Test Results
and Generate Test Results Reports” on page 7-7.

See Also

Related Examples

. “Set Signal Tolerances” on page 6-108

. “Capture Baseline Criteria” on page 6-118

. “Run Tests in Multiple Releases” on page 6-72

6-9

6 Test Manager Test Cases

Creating Baseline Tests

6-10

Verify simulation result against a baseline dataset created from a model.

This example shows you how to create baselines tests for a model. The example uses the model
sltestBaselineBasicExample to generate a baseline dataset of expected results by simulating
the model. The baseline test case checks that the simulation results produce the same output as the
baseline dataset, which determines the pass/fail criteria of the test case.

Open the Model and Test Manager

1. Open the model.
mdl = 'sltestBaselineBasicExample';

open_system(mdl) ;

Creating Baseline Tests

This model is used to show how baseline tests can be created and executed in the Test Manager.
To see the demo, execute showdemo sltestTestManagerBaselineDeme in MATLAB(R).

b » 2 1
E
Ny T"J

Copyright 2015 The MathWorks, Inc.

2. From the model, in the Apps tab, click Simulink Test from the Model Verification, Validation, and
Test section. Then click Test Manager in the Tests tab.

3. Create a new test file using the Test Manager toolstrip.

4. Name the test file, and save it in a writable folder.

Capture Baseline

1. Under System Under Test, for Model, enter sltestBaselineBasicExample. Capture a
baseline for the test case by expanding the Baseline Criteria section and clicking Capture. Save the

file BaselineData in a writable folder.

The test case runs, and baseline data is captured for the root outports.

Creating Baseline Tests

~ BASELINE CRITERIA®

Include baseline data in test result

SIGMAL MAME BBS TOL REL TOL LEADING TOL LAGGIMNG TOL o
- | BaselineData mat 0 0.009% 0 0
| Out1:1 0 0.00% 0 0
& Out2: 0 0.00% 0 0

3

2. Click Run from the toolstrip to execute the test.

=| Requirements Scenarios » [ff| StartPage x [5| NewTestCase1 x

New Test Case 1 v| Enabled

baselinecomparison = Mew Test Suite 1 » New Test Case 1

Baseline Test

Select releases for simulation: | Current -

Create Test Case from External File
P TAGS
» DESCRIPTION
 REQUIREMENTS
~ SYSTEM UNDER TEST*

Model: | sltestBaszelineBasicExample [] "i ac

» TEST HARNESS
b SIMULATION SETTINGS OVERRIDES
Visualize Baseline Test Results

1. After the test completes, expand all rows in the Results and Artifacts pane. The test case passes
because the simulation results match the baseline results.

6-11

6 Test Manager Test Cases

4 [=] ExampleTestFile 1@
4 [T Mew Test Suite 1 1@

- @ Mew Test Case 1]

4 Baszeline Criteria Result /]

() Outt o

() Out2 o

4 Sim Output (sltestBaseline
Cut —

Cut2

2. Select the option button for Out2 under Baseline Criteria Result to visualize the data

comparison.

Results and Artifacis

|Fi|te' results by name or tags, e.g. tags: te id

New TestCase 1 » [fl Start Page

% [E] New Test Case 1 x

W Qut2:1 (Baseling) m Qut2 (Compare To) M Tolerance

Comparison x

+ [£] New Test Case 1 -] -
- [[&] Baseline Criteria Rasult] z
O Outl:1]
@ Qut2:1]
« /Y Sim Qutput (sltestBaselineBasi ¢
Quti —
Qut2 —
. -2

Name Out2:1] 1 2 4 5 8 7] 2 10
Status L] M Difference M Tolerance
Absolute Tolerance 0 1.0
Relative Tolerance 0.00%
Leading Tolerance 0
Lagging Tolerance 0 o
Block Path sitestBaselineBasicExa...
Port 1 G
Interp Method zoh
Sync Method union
Max Diff 0 e
Baseline: Units
Baseline: Sample Time 0.2 4.0
Baseline: Data Type double - o 1 2 4 5 5 7 M M 10

close system(mdl, 0);
clear mdl;

6-12

Test a Simulation for Run-Time Errors

Test a Simulation for Run-Time Errors

In this example, use a simulation test case with the sldemo absbrake model to test for simulation
run-time errors.

Configure the Model

Configure the model to check if the stopping distance exceeds an upper bound.

0.2

Desired
relative
slip

4

cirl

Modeling an Anti-Lock Braking System (ABS)

Open the model sldemo absbrake.
Add the Check Static Upper Bound block from the Model Verification library to the model.
Connect the Check Static Upper Bound block to the Sd signal.

mu-sip
friction curve

Weight

1-D
7| T Ff |

-

Input

Tire Torque

: tire torque

[

ddemo_wheelpeed_absbrake

WheelSpeed

—]

Vehicle
speed

slp

1.0-u(1¥(u(2) + (u2)==0)"eps

Relative Slip

Copyright 1990-2013 The M athWorks, Inc.

Create the Test Case

1

Wheel Speed
= vout
4+mr pol
W3
Vehicle speed
(angular)
STOP
- 1 -
Stopping distance
-
—
Check Static
Upper Bound

To create a test file, click New. Name and save the test file.

In the Check Static Upper Bound block dialog box, and set Upper bound to 725.

To open the Test Manager, on the Apps tab, under Model Verification, Validation, and Test, click
Simulink Test. Then, on the Tests tab, click Simulink Test Manager.

The new test file consists of a test suite that contains one baseline test case. They appear in the
Test Browser pane.

Select New > Simulation Test.

Right-click the new simulation test case in the Test Browser pane, and select Rename. Rename
the test case to Upper Bound Test.

6-13

6 Test Manager Test Cases

In the test case, under System Under Test, click the Use current model button e to assign
the sldemo absbrake model to the test case.

Under Parameter Overrides, click Add to add a parameter set.

In the dialog box, click the Refresh button c to update the model parameter list.
Select the check box next to the workspace variable m. Click OK.
Double-click the Override Value and enter 55.

4 [v| Parameter Set1

v m base workspace

n
o

This value overrides the parameter value in the model when the simulation runs.

Note To restore the default value of a parameter, clear the value in the Override Value column
and press Enter.

Run the Test Case

1 In the Test Browser pane, select the Upper Bound Test case.
2 In the Test Manager toolstrip, click Run. The test results appear in the Results and Artifacts
pane.

View Test Results
1 Expand the test results, and double-click Upper Bound Test.

A new tab displays the outcome and results summary of the simulation test.

2 The result indicates a test failure. In this case, the stopping distance exceeded the upper bound
of 725 and triggered an assertion from the Check Static Upper Bound block. The Errors section

contains the assertion details.

- SUMMARY

MName Upper Bound Test
Outcome [x]
Assertion detected in 'sldemo_absbrake/Check Static Upper Bound' at time 12.1928

6-14

Test a Simulation for Run-Time Errors

See Also

More About
. “Run Tests in Multiple Releases” on page 6-72

6-15

6 Test Manager Test Cases

Automatically Create a Set of Test Cases

6-16

In this section...

“Creating Test Cases from Model Elements” on page 6-16
“Generating Test Cases from a Model” on page 6-16

Creating Test Cases from Model Elements

You can automatically create a set of test cases and iterations that correspond to blocks and test
harnesses in your model. You specify whether the test cases are baseline, equivalence, or simulation
test cases. To automatically create test cases, your model must contain either or both of the
following:

* One Signal Editor or Signal Builder block at the top level of the model. If the block has only one
scenario or signal group, a test case is created. If the block has more than one scenario or signal
group, an iteration is created for each scenario or group.

» Test harnesses. If a test harness contains one (and only one) Signal Editor or Signal Builder block
at the top level, a test case is created for the scenario or signal group in the block. If the block has
more than one scenario or signal group, an iteration is created for each scenario or group.

To automatically create test cases or iterations for your model:

1 In the Test Manager, select New > Test File > Test File from Model.

2 In the dialog box, select the model that you want to generate test cases from. The model must be
on the MATLAB path.

3 Select the test case type, and click Create.

Generating Test Cases from a Model
Generate test cases based on model hierarchy.

This example shows how to generate test cases based on the components in your model. This example
uses the model sltestCar, which has been pre-configured with the following:

+ Signal Editor block at the top level of the model
» Test harnesses at the top level of the model

» Signal Editor block at the top level of the test harness

Open the Model and Test Manager

Execute the following code to open the model configured with different components such as Signal
Editor scenarios and test harnesses.

mdl = 'sltestCar';
open_system(mdl) ;

Automatically Create a Set of Test Cases

Passing_Maneuve

Simulink® Test™ model sltestCar

Brake

brake

h 4

k4

Ti

throtile

Me

Engine

¥

Y

=" Thrattle
i

Inputs

throtile

impeller forque

shift_logic

¥
[=]
&

¥
g

oufput torque

transmission

‘wishicle

transmiseion speed

wehicle speed

Copyright 1957-201%9 The MathWarks, Inc.

Open the test manager. Enter sltestmgr in the MATLAB command prompt.

Generate Test Cases From the Model

In the test manager, click the New arrow and select Test File from Model.

6-17

6 Test Manager Test Cases

I L Yy .

T

New | Open GSzve PV Delete Test Spec | R
S R v Paste - Report -
Test File

Create a blank test file

TEST CASE TEMPLATES

AUTO CREATE

Test File from Model
Create a test file from model %

Test from Spreadsheet
Create a new test with data specified in a spreadsheet

1 Inthe New Test File dialog box, click the Use current model button to specify sltestCar as
the Model.
Specify the Location of the test file.
Select the Baseline from the Test Type dropdown. All test cases generated will be of the test
type specified here.

4 Click Create.

6-18

Automatically Create a Set of Test Cases

New Test File ? X
Model sltestCar = "
Location |lsltestCar.midatx [~}

Test Type |Baseline ‘ ¥

The sltestCar SigEditor/Inputs test case uses table iterations.

. wiuuch. 2CILal \JIHI_UIIUI
=1 _
v 2] test

¥ [sltestCar_SigEditor/Inputs » TEST HARNESS

,_5, sltestCar_SigEditor/Inputs

- » SIMULATION SETTINGS OVERRIDES
« [7] sltestCar_SigEditor/shift_logic

_|i| ShiftLogic_InportHarness » PARAMETER OVERRIDES
» CALLBACKS
» INPUTS®
» SIMULATION OUTPUTS
» CONFIGURATION SETTINGS OVERRIDES
» BASELINE CRITERIA

v ITERATIONS

v TABLE ITERATIONS®

| NAME DESCRIPTION
+ Coasting None
v | Gradual_Acceleration None
« Hard_braking None
' |Passing Maneuver None

Before you run the test, you must specify the baseline criteria for each generated test case.

close system(mdl, 0);
clear mdl;

See Also

More About

. “Synchronize Tests” on page 6-49
. “Test Sections” on page 6-112
. “Compare Model Output To Baseline Data” on page 6-7

6-19

6 Test Manager Test Cases

. “Test a Simulation for Run-Time Errors” on page 6-13

. “Test Two Simulations for Equivalence”

. “Import Test Cases for Equivalence Testing” on page 5-14
. “Generate Tests for a Component” on page 6-21

6-20

Generate Tests for a Component

Generate Tests for a Component

In the Test Manager, the Create Test for Component workflow wizard creates an internal test harness
and test case for a single model component. Components for which you can create test harnesses
include subsystems, Stateflow charts, or Model blocks. For a full list of components supported by test
harnesses, see “Test Harness and Model Relationship” on page 2-2.

In the wizard, you specify:

The model and component to test
The test inputs
The type of test to run on the component

The format in which to save test data — MAT-file or Excel®. For more information on using Excel
files in the Test Manager, see “Format Test Case Data in Excel” on page 6-60.

The wizard sets parameters for a subset of test options. To specify other options, such as coverage or
reports, configure the created test cases in the Test Manager. For an example that uses the wizard,
see “Create and Run a Back-to-Back Test” on page 6-27

Open the Create Test for Component Wizard

1

In the model that contains the component for which you want to create the test, select that
component.

In Test Manager, if no test file is open, select New > Test File or Test File from Model and
save the new file.

Select the test file or test suite in which you want to create the test case, and then select New >
Test for Model Component. The Create Test for Component wizard opens.

6-21

6 Test Manager Test Cases

Specify Component to Test

Create Test for Model Component

X

Top Model:

Component:

What is your Component under Test (CUT)?

Specify block path

About current step

Specify the top model and component to
test.

Components that you can test:
» Subsystem
+ Model Reference block
» Stateflow chart
* S-Function block
» For more information on supported
component types click here

Back Next

On the first page of the wizard, click the Use current model button B to fill in the Top Model
field. Then, click the Use currently selected subsystem button to fill in the Component field.

Click Next to go to the next page of the wizard.

Note If the component you are testing is in a Model reference, you do not need to specify the Model
block as the top model. Use the name of the model that contains the Model block as the Top Model.

6-22

Generate Tests for a Component

Specify Test Inputs

Create Test for Model Component

System » Test Inputs

How do you want to setup the inputs?

®) Use component input from the top model as test input

Create hamess inputs by simulating the fop model and recording the component inputs

Use Design Verifier to generate test input scenarios

Create inputs using Simulink Design Verifier. Design Verifier Settings

Specify inputs in the created harmness

Create a new test hamess for component. Inputs should be added to the hamess

On the Test Inputs page, select how to obtain the test inputs.

* Use component input from the top model as test input — Simulate the model and record the
inputs to the component. Then, use those inputs as the inputs to the created test harness. Use this
option for debugging.

+ Use Design Verifier to generate test input scenarios — Create test harness inputs to meet
test coverage requirements using Simulink Design Verifier. This option appears only if Simulink
Design Verifier is installed.

Note If the component under test is a Subsystem block, verify that Treat as atomic unit is
selected in the block parameters for that subsystem.

Select test harness input source — Select how the inputs generated by the Design Verifier are
applied to the test harness.

* Root input ports — Create a test harness with root input ports as the source. Map the
design verifier input file to the input ports

* Signal Editor — Create a test harness with the Signal Editor as the source that contains
input scenarios generated by the Design Verifier.

* Specify inputs in the created harness — After the wizard creates the harness, open the
harness in the Test Manager and manually specify the harness inputs.

6-23

6 Test Manager Test Cases

Specify Test Method

Create Test for Model Component

System > TestlInputs > Verification Strategy

How do you want to test the component?
Use component under test output as baseline

Simulate the top mode! and record the outputs of the component to be used as baseline

®) Perform back-to-back testing

Set up a test to compare the component under test outputs in different simulation modes

Select simulation modes:

Simulation1: Marmal

Simulation2: Software-in-the-Loop (SIL) | ¥

Define the verification logic in the created harness
No verification logic will be automatically added fo the test

On the Verification Strategy page, select how to test the component.

* Use component under test output as baseline — Simulate the model and record the outputs
from the components, which are used as the baseline.

* Perform back-to-back testing — Compare the results of running the component in two different
simulation modes. For each simulation, select the mode from the dropdown.

* Define the verification logic in the created harness — After the wizard creates the harness,
open the harness. Manually specify the verification logic using Test Sequence or Test Assessments
in the generated harness, or logical and temporal assessments or custom criteria in the generated
test case

6-24

Generate Tests for a Component

Specify How to Save Test Data

Create Test for Model Component

System » TestInputs » Verification Strategy » Generated Test

Specify the format to save the test data:

EXCEL ¥

Specify the location to save the test data:

BZBtestData []

On the Generated Test page, specify the file name and select the format in which to save the test

data.

* Specify the format to save the test data — Specify the type of file in which to save data.

* Excel — Saves the test inputs, outputs, and parameters to one sheet in an Excel spreadsheet
file. For tests with multiple iterations, each iteration is in a separate sheet. For more
information on using Excel files in the Test Manager, see “Format Test Case Data in Excel” on

page 6-60.

* MAT — Saves inputs and outputs in separate MAT files. For tests that use Simulink Design
Verifier, a single MAT file contains the inputs and parameters, and the outputs are in a

separate baseline file.

* Specify the location to save the test data — Use the default file name, which is
sltest <model name> in the current working folder. Alternately, specify the full path of the file.

Generate the Test Harness and Test Case

Click Done to generate a test harness and test case.

If the model has an existing external harness, the wizard creates an external test harness for the
component under test. If no harness or an internal harness exists, the wizard we creates an internal

test harness.

The Test Manager opens with the test case in the Test Browser pane and the test harness in the
System Under Test - Harness field. The test case is named <model name> Harness<#>.

See Also

More About

. “Create and Run a Back-to-Back Test” on page 6-27
. “Test Two Simulations for Equivalence”

6-25

6 Test Manager Test Cases

. “Compare Model Output To Baseline Data” on page 6-7
. “Test a Simulation for Run-Time Errors” on page 6-13
. “Automatically Create a Set of Test Cases” on page 6-16

6-26

Create and Run a Back-to-Back Test

Create and Run a Back-to-Back Test

In this section...
“Run the Back-to-Back Test” on page 6-30
“View the Back-to-Back Test Results” on page 6-31

This example shows how to create and run a back-to-back test, which is also known as an equivalence
test. Back-to-back tests compare the results of normal simulations with the generated code results
from software-in-the-loop, processor-in-the-loop, or hardware-in-the-loop simulations.

1 Set the current working folder to a writable folder.
2 Openthe rtwdemo sil block model.

open_system('rtwdemo sil block")
3 To select the component to test, click the Controller subsystem.

outt |——»{
P In1
Out2
Plant
., |
(1)&———— double [« Outl In1je—— single |«
single2double I s) double2single
Controller

4 To open the Simulink Test tab, in the Apps tab, in the Model Verification, Validation, and Test
section, click Simulink Test.
5 To open the Test Manager, in the Tests tab, click Simulink Test Manager.

SIMULATION DEBUG MODELING FORMAT APPS TESTS X
! —
Create Test Harness for @ Add Test Harness @ L
rtwdemo_sil_block < ,Q, Import Test Harness ~ Manage Test || Simulink Test
Harnesses « Manager
NAVIGATION CREATE TEST HARNESS MAMNAGE TEST CASES

6 To create a test file, in the Test Manager, click New > Test File and save it as B2Btest.mldatx.

7 In the Test Browser pane, right-click New Test Case 1 and select Delete.

8 Highlight New Test Suite 1 and then click New > Test for Model Component. The Create
Test for Model Component wizard opens.

6-27

6 Test Manager Test Cases

Create Test for Model Component X

About current step

What is your Component under Test (CUT)’> Specify the top model and component to
test.
Top Model: A I TR
Components that you can test:
Component: | Specify block path "i « Subsystem

Model Reference block

Stateflow chart

S-Function block

For more information on supported
component types click here

Back Next

9 To specify the Top model and Component to test, fill the fields by clicking the Use currently

selected subsystem button e next to the Component field.

Create Test for Model Component

What is your Component under Test (CUT)?

Top Model: | rtwdemo_sil_block m g A

Component: | rtwdemo_sil_block/Controller "i

10 Click Next to specify how to obtain the test harness inputs. Select Use component input from
the top model as test input. This option runs the model and creates the test harness inputs
using the inputs to the selected model component.

6-28

Create and Run a Back-to-Back Test

Create Test for Model Component

System » Test Inpuis

How do you want to setup the inputs?

®) Use component input from the top model as test input

Create hamess inputs by simulating the top model and recording the component inputs

Use Design Verifier to generate test input scenarios

Create inputs using Simulink Design Verifier. Design Verfier Settings

Specify inputs in the created harness

Create a new test hamess for component. Inputs should be added to the hamess

11 Click Next to select the testing method. Click Perform back-to-back testing. For
Simulation1, use Normal. For Simulation2, use Software-in-the-Loop (SIL).

Create Test for Model Component

System » TestInputs » Verification Strategy

How do you want to test the component?
Use component under test output as baseline

Simulate the top model and record the outputs of the component fo be used as baseline

®! Perform back-to-back testing
Set up a test to compare the component under test outputs in different simulation modes

Select simulation modes:

Simulation1: Normal v

Simulation2: Software-in-the-Loop (SIL) | ¥

Define the verification logic in the created harness

No verification logic will be automatically added fo the test

12 Click Next to specify the format and where to save the test data. For Specify the format to
save the test data, select EXCEL. For Specify the location to save the test data, enter
B2BtestData. The Excel file is saved to the current working folder.

6-29

6 Test Manager Test Cases

Create Test for Model Component

System » TestlInputs » Verification Strategy > Generaied Test

Specify the format to save the test data:

EXCEL v

Specify the location to save the test data:

B2BtestData []

13 Click Done. The test harness and test case are created.

Results and Artifacts | |7 New Test Suite 1~ » m Start Page x _Ii, rtwdemo_sil_block_Harness1
Filter tests by name or tags, e.g. tags: test v SIMULATION 1

~ [=] B2Btest*
¥ [T New Test Suite 1 * SYSTEM UNDER TEST

‘_i, rtwdemo_sil_block_Harness1

Model: | riwdemo_sil_block mp&C

» TEST HARNESS

Harness: | rtwdemo_sil_block_Harness1 " cC &

» SIMULATION SETTINGS OVERRIDES*®

» PARAMETER OVERRIDES
» CALLBACKS

» INPUTS

» SIMULATION OUTPUTS

» CONFIGURATION SETTINGS OVERRIDES

* SIMULATION 2 Copy settings from Simulation 1

v SYSTEM UNDER TEST
Model: | rtwdemo_sil_block m%R*C
~ TEST HARNESS

Harness: | rtwdemo_sil_block_SILHarnass1 " cC &

» SIMULATION SETTINGS OVERRIDES*

Run the Back-to-Back Test

To run the back-to-back test, click Run.

6-30

Create and Run a Back-to-Back Test

View the Back-to-Back Test Results

Expand the Results hierarchy in the Results and Artifacts panel. Select Outl:1 under Equivalence
Criteria Result. The upper plot shows that the output signals align and the lower plot shows that
there is zero difference between the output signals.

Results and Artifacis Woaq X Mstar‘t Page X _5 rtwdemo_sil_block_Harness1 EVlsuahze EComparison

Filter results by name or tags, e g tags ENN W Out1:1 (Baseline) M Out1:1(Sim Output) ™ Tolerance

NAME STATUS

~ Results: 2019-Jul-12 09:21:11 10
+ [5] rtwdemo_sil_block Harness1 [100
~ [zl Equivalence Criteria Result [
@ Qut1:1 (-]
- E Sim QOutput 1 (rtwdemo_sil_blo 50
Out1:1 —

- E Sim Output 2 (rtwdemo_sil_blo

Out1:1 —
1 2 3 4 5 6 7 8 9 10
B Tolerance M Difference
» 10
PROPERTY VALUE
Name ; Qut1:1 05
Status [
Absolute Tolerance 0 0
Relative Tolerance 0.00%
Leading Tolerance 0 05
Lagging Tolerance 0
Block Path riwdemo_sil_block Har. 10
Port 1 v i 2 3 4 5 3 7 8 3 10
See Also

sltest.testmanager.TestFile | sltest.testmanager.TestSuite

More About

. “Generate Tests for a Component” on page 6-21

6-31

6 Test Manager Test Cases

Testing AUTOSAR Compositions

Run back-to-back tests on an AUTOSAR composition model. Copyright 2017 The MathWorks, Inc.

This example demonstrates test harness features and back-to-back testing workflows for an
AUTOSAR composition model. Switch to a directory with write permissions.

The example uses a model of a throttle position controller for an automobile. It is based closely on the
“Import AUTOSAR Composition to Simulink” (AUTOSAR Blockset) example.

Open the AUTOSAR Composition Model

AUTOSAR composition models contain a network of interconnected Model blocks, each of which
represents an atomic AUTOSAR software component (ASWC). The throttle position controller
composition was created by an AUTOSAR authoring tool (AAT) and imported into Simulink using an
ARXML file that describes the composition.

The composition model contains six component models, one for each atomic software component in
the composition. Simulink inports and outports represent AUTOSAR ports and signal lines represent
AUTOSAR component connectors.

mdl = fullfile(matlabroot, 'toolbox', 'simulinktest', 'simulinktestdemos’', ...
'sltestThrottlePositionControlCompositionExample.slx');
open_system(mdl) ;

Testing AUTOSAR Compositions

This madsl iz Usad to show how to test AUTOSAR composition modals.
Ta see the dema, execute i MATLABIR).

shtastThrotlieP ositionSencorMdiRe! shastThrotisPasitonianitorMdiRat elles ThrolisPasiionCantrallsridRef
2 r—+o oo G r—*oopos (5 —+o oo [T——————
TPS_Sacondary. Run_0.005 Moritor_Run_0.005 Gontrollar_Run_0.005 @ Mo orpons)
TPS_Seconday_Valus Actustor_Run_0.005
- #{TPS HWIO Value TPS_Percent Value I | TPS_Percent_Value
TPS2_HwiO_Valus T U I BT ThrCemel_Percent. ThiCmd_Percent Value ThrCmd_HwlO_Value
2 ThrCmd_FnlO_ Value
TPS_Secondary 173 sy Value S T
7 “Actuator
Manitor Conirollar
shestThrottleP ositionSensorMdiRet
N iy ;hgsm\mﬁnnPEﬂaansmunssnsumd\
(G)—+o 1o
TPS_Primary_Run_0.005 .
AP 0.005 Copyright 2017 The MathWorks, Inc
| »{TPS Hwio_valus TPS_Parcant
B o [TN [TV —
APP_HulO_Value |

6-32

TPS_Primary

APPSnst

This model represents an AUTOSAR composition which contains a number of AUTOSAR atomic
software components (ASWCs):
1) The Model blocks represent AUTOSAR ASWC prototypes.
2) The signal lines between the Model blocks represent AUTOSAR assembly connectors.
3) The signal lines between the Model blocks and data Inports/Qutports represent AUTOSAR
delegation connectors.

Copyright 2017 The MathWorks, Inc.

Open Test Harness

A test harness for the model has been generated and can be opened using the perspective control in
the lower right corner of the editor canvas. Alternately, use:

sltest.harness.open('sltestThrottlePositionControlCompositionExample', ...
'BasicSchedulerTest');

Testing AUTOSAR Compositions

-F PS1_HwiD_Value

¥

¥

¥

¥

¥

¥

¥

——»

Signal spec.
and routing

sltestThrotlePositionControlCompositionExample

TPE_Prmary_Run_0.005

TPS_Secondary_Fum_0.005

Monitor_Run_0.005

APPSnsr_Run_0.005

Controller_Run_0.005

Actuator_Run_0.005

APP_HwlO Value

TPS1_HwlD_Value

TES2 HwlO_Value

Thremd_HwlO_Value > C]

Thremd_HwIO_ Vake <=

Signal spec.
and routing

A Test Sequence block is used as the source. The component under test requires the accelerator
pedal position sensor input APP_ HwIO Value, which is modeled in the Test Sequence block using a
simple three step sequence:

6-33

6 Test Manager Test Cases

BasicSchedulerTest/Test Sequence - Test Sequence Editor 4 _ 0O X
H @ ¢ WEs @88 4@ P Q- & & @
Symbols Step Transition Next Step Description
Input Initialize 1. after(0.05,5ec) Run y [nitalize the acce\eljation pedal position

1 TPS_HwIO_In command to a nominal value and hold for

%% Initialize data outputs. 50 ms.

Output APP_HwIO_Value = uint16(170);

1. APP_HWIO vall TPS1_HwlO_Value = TPS_HwIO_In;

2) TPS1_Hwi0 Value TPS2_HwIO_Value = TPS_HwIC_In;

2. [0 TPS2_HwIO_ Ve %% Schedule function-call outputs.
) send(TPS_Primary_Run_0005)

+ JxTPS_Primary F send(TPS_Secondary Run_0005)

{
5. fx TPS_Secondary_Rur send{Monitor_Run_0005)
& fx Monitor Run send{APPSnsr_Run_0005)
- send{Controller_Run_0005)
7. fx APPSNsr_Run_0005 send(Actuator_Run_0005)
8. fx Controller_Run_000
s fx Actuator_Run_0005 Run 1. after(0.95, sec) Terminate w Startthe testby applying a steady
- acceleration command for 850 ms.
Local %% Initialize data outputs.
APP_HwIO_Value = uint16(681);
Constant TPS1_HwIO_Value = TPS_HwIO_In;
parameter TPS2_HwIO_Value = TPS_HwIO_In;

Data Store Memory %% Schedule function-call outputs.
send(TPS_Primary_Run_0005)
send(TPS_Secondary_Run_0005)
send{Monitor_Run_0005)
send(APPSnsr_Run_0005)
send{Controller_Run_0005)
sendl(Actuator_Run_0005)

i Terminate Reset the acceleration command to the
nominal value and terminate the test.
%% Initialize data outputs.
APP HwIO Value = uint16(170);
TPS1_HwIO_Value = TPS_HwIC_In;
TPS2_HwIO_Value = TPS_HwIO_In;

9% Schedule function-call outputs.
send(TPS_Primary_Run_0005)
send(TPS_Secondary_Run_0005)
send(Monitor_Run_0005)
send(APPSnsr_Run_0005)
send(Controller_Run_0005)
send(Actuator_Run_0005)

The Initialize step sets the input to a nominal value and the Run step models a steady
acceleration command for 950 ms. The acceleration command is reset to the nominal value in the
Terminate step. The component under test requires two additional inputs that capture the primary
and secondary throttle position sensor readouts. These inputs are modeled using an external time
series input and are directly fed through the Test Sequence block without modification. This modeling
style is useful when some stimulus inputs can be modeled and others are only available as externally
captured data.

Test Harnesses for Export Functions

The component under test is the AUTOSAR composition model, which uses the export-function
modeling style. When you create a test harness for an export-function model, the harness will contain
a Test Sequence block configured to call each root-level Simulink Function block and send a trigger
event to each function-call subsystem in the model. The generated Test Sequence block can be used
as a convenient starting point for modeling a scheduler.

In this example, since the input signal data is also being generated by a Test Sequence source block,
the code to send the trigger events has been consolidated into a single Test Sequence block and

6-34

Testing AUTOSAR Compositions

embedded in each step after the stimulus waveforms have been generated. The call order of the
trigger events are computed using compiled information from the composition model.
send(TPS_Primary Run 0005)

send(TPS_Secondary Run 0005)

send(Monitor Run 0005)

send (APPSnsr_Run_0005)

send(Controller Run 0005)

send(Actuator Run 0005)

S U1 A W N -

Simulate the model to see the throttle command output from the component under test.

sim('BasicSchedulerTest');
open_system('BasicSchedulerTest/Scope');

4 = [=] 5

File Tools View Simulation Help &

R N O N = R R P

Ready Sample bazed | T=1.500

Back-to-back Testing

The test manager can be used to lock down simulation behavior and verify equivalence in software-in-
the-loop (SIL) mode. Open the test file and run the equivalence test.

6-35

6

Test Manager Test Cases

600

09

06

0.3

03

06

09

close system(mdl,0);

filePath = fullfile(matlabroot, 'toolbox', 'simulinktest',...
'simulinktestdemos', 'sltestThrottlePositionControlTests.mldatx');

open(filePath);

sltest.testmanager.run;

The test case verifies the open-loop behavior of the Throttle Position Controller ASWC within the
composition model. The first part of the equivalence test case runs the test harness containing the
composition in normal simulation mode. The second part of the test uses the Post-Load callback to
switch the Throttle Position Controller ASWC to software-in-the-loop (SIL) mode with Top model
code interface. The results of both simulations show that the behavior is equivalent.

W ThrCmd_HwIO_Value (Baseline) M ThrCmd_HwiO_Value (Compare To) ™ Tolerance

o 0.1 0.z 0.3 0.4 05 0.6 07 og 0.9 10 11 1z 1z 14

W Difference ® Tolerance

] [02 03 0.4 05 0.6 07 0g 0.8 10 11 1z 1z 14

Cleanup

clear sltestThrottlePositionControlData HBridgeCmd LkupTbl ...
SensorSelection SetpointPercent LkupTbl TPSPrimaryPercent LkupTbl...
TPSSecondaryPercent LkupTbl TPSPercent LkupTbl tout logsout mdl filePath;

sltest.testmanager.clear;

sltest.testmanager.clearResults;

sltest.testmanager.close;

6-36

Testing a Lane-Following Controller with Simulink Test

Testing a Lane-Following Controller with Simulink Test

Perform requirements-based testing for an automotive lane-following system.
This example shows how to:

1 Author high level testing requirements for a closed loop model implementing a lane-following
algorithm.

Author tests in Simulink® Test™ to verify safe operation for each requirement.
Execute tests and review verification status.

Introduction

This example shows how to verify an automated lane-keep assist algorithm using the Test Manager
and blocks from the Model Verification library. This example is similar to the Lane Following
Control with Sensor Fusion and Lane Detection example in Model Predictive Control
Toolbox™. For details on the control algorithm and closed-loop system model, see “Lane Following
Control with Sensor Fusion and Lane Detection” (Model Predictive Control Toolbox).

Set Up Example Files and Open the Project

Create and open a working copy of the project files. The project organizes files into several folders.
The controller and system model files are in the Models folder. The high level requirements for the
controller are captured in LaneFollowingTestRequirements.slreqx within the Requirements
folder. The Test Manager test file is in the Tests folder.

[projectFolder,~]=matlab.internal.project.example.projectDemoSetUp...
(fullfile(matlabroot, 'toolbox', 'simulinktest', 'simulinktestdemos', ...
'sltestlLaneFollowing.zip'),[1,[1);

proj = simulinkproject(projectFolder);

Open the System Model
Open the LaneFollowingTestBenchExample model.

* The lane following controller is implemented by a Model block.

* The vehicle dynamics and driving environment is modeled within the Vehicle and
Environment subsystem.

* The road, lane and traffic scenarios use synthetic data generated by the Automated Driving
System Toolbox™, which is saved in the Data folder.

* The Scenario Reader block in the Vehicle and Environment subsystem reads the scenario
data during simulation.

mdl = 'LaneFollowingTestBenchExample';
open_system(mdl);

6-37

6 Test Manager Test Cases

Lane Following with Spacing Control

Test Bench

Model Buttons

Edit Setup
Script

LF Refhidl
BusVision Vision Acceleration
BusRadar Radar
driver_set_weldrity, . B e
v_sel ¥ Diriver Sat Velocity
I Longitudinal Velocity
(mfs) oy
mis) Tracks
) Lane Sensor
12:34] System Clock MIO Track Index
doubds
Systemn Clock 1

- (mis<)
ego_accelaration’ - ¢

{rad}

\Vision

Accelaration
imas®) Radar
Longitudinal Valocity
Lane Sensor

| Siearing Angle
{rad}

Aciors

ego_velocity

BushultiCbjeciTracker1

Vehicle and Environment

P Trachs Actors p
_I—b MID Index ego_velocity
MIC Track Sansar

Lane Following Controller

Collizion Detection

6-38

Driving Scenario Requirements

The data includes nine driving scenarios, with high level testing requirements for each scenario.
Open the Requirements Editor from Simulink® Requirements™ to view the requirement set. In the
Apps tab, click Requirements Manager in Model Verification, Validation, and Test section. Then,
click Requirements Editor in the Requirements tab and choose the
LaneFollowingTestRequirements.slreqx file. You can also enter:

open('LaneFollowingTestRequirements.slregx"');

Testing a Lane-Following Controller with Simulink Test

» Ul Ewam -

Target Discrimination Test initial velocity = 30m/s constant accel 24m/s — 24m/s
2Tm/s @ 2m/s?
___ o HWT = 2.2sec
(HW = 66m) Vg = 27m/s (97.2kph)
Lead car velocity/acceleration profile v_set = 30m/s

Each requirement represents a driving scenario. The first four requirements test tracking ability of
the control algorithm. The next few requirements assess lane following ability under various road
conditions:

* Scenario 1: ACC ISO TargetDiscriminationTest. This is a basic test to ensure the controller can
track a lead car in the travel lane.

* Scenario 2: ACC ISO AutoRetargetTest. Test if the controller can re-target to a new car in the
travel lane when the current target switches lanes.

» Scenario 3: ACC ISO_CurveTest. Test if the controller can track a slowing car in the travel lane
while navigating the curvature of the road.

* Scenario 4: ACC StopnGo. This test simulates stop and go movement in the travel lane due to
heavy traffic

* Scenario 5: LFACC DoubleCurveDecelTarget. Track the decelerating lead car through two S
curves.

* Scenario 6: LFACC DoubleCurve AutoRetarget. Test ability to retarget to a new lead car on a
curve.

* Scenario 7: LFACC DoubleCurveStopnGo. This test simulates stop and go movement on a curved
highway.

* Scenario 8: LFACC Curve CutInOut. This test ensures the controller can identify a car cutting into
and out of the travel lane

* Scenario 9: LFACC Curve CutInOut TooClose. This test repeats the previous test with shorter
separation distance between the ego and lead car.

Assessment Criteria

There are three main assessment criteria used to verify satisfactory operation of the controller:

6-39

6 Test Manager Test Cases

6-40

1 Collision avoidance: Ensure that the ego car does not collide with the lead car at any point during
the driving scenario.

2 Safe distance: Ensure that the time gap between the ego car and the lead car is above 0. 8s. The
time gap between the two cars is defined as the ratio of the calculated headway and the ego car
velocity.

3 Lane following: Ensure that the lateral deviation from the centerline of the lane is within 0.2 m

The first two criteria are verified by the LaneFollowingTestBenchExample/Collision
Detection/Test Assessments Test Sequence block. A verify statement checks if a collision is
detected at any point during the simulation.

A second verify statement checks whether the calculated time gap between the two cars falls below
0.8 s. The duration operator allows for transient failures due to sudden changes in road conditions
or sensor inputs. The duration operator allows failures with this assessment for up to 5 s at a time.

@ LaneFollowingTestBenchExample/Collision Detection/Test Sequence - Test Sequence Editor

(| “ BE= 88 4@ P Q- & e @

Step Transition Next Step
GlobalAssessments
% Ensure that the time gap between the ego vehicle and lead vehicle does not dip below

% 0.8s for more than 5s at a time.
verify(duration(time_gap < 0.8, sec) < 5);

% Verify that no collision was detected
verify(~collision);

The lane following assessment is included in the Test Sequence block LFRefMd1l/Test
Assessments.

Testing a Lane-Following Controller with Simulink Test

@ @ LFRefMdl|/Test Assessments - Test Sequence Editor
o v BB = @8 4@ P Q- & @& @-

Step Transition Next Step
GlobalAssessments

% Verify that the absolute value of lateral deviation from the lane centerline does not exceed 0.2m
% for more than 5s at a time.
verify(duration(abs(lateral_deviation) > 0.2, sec) < 5);

A verify statement using the duration operator checks that the absolute value of the lateral
deviation from the centerline of the travel lane does not exceed 0.2 m for more than 5 s at a time.

Running an Interactive Simulation

To configure an interactive simulation, follow these steps:

1 Select a driving scenario by setting the scenariold variable to a value between 1-9 in the
MATLAB® base workspace.

Run the helperLFSetUp script to load required types and data.

Open the Bird's-Eye Scope using the visualization drop-down in the Simulink® model toolbar and
set it up to observe the simulation by clicking Find signals.

Simulate the model to visualize the chosen driving scenario.
5 Run the script plotLFResults to assess controller performance script.

You can also run these commands to run the simulation and plot results for the first scenario:

scenariold = 1;
helperLFSetUp;
sim(mdl);
plotLFResults(logsout);
Simulink.sdi.view;

Open the Simulation Data Inspector to view the results of the verify statements within the Test
Sequence blocks.

6-41

6 Test Manager Test Cases

6-42

Simulation Data Inspector - untitled*
Q & ‘ HE(E- |- R | SR

Inspect Compare m Test

Filter Signals.
NAME

~ Run1 [Current]

Fail

ARNRRRNRRARY
B
o
-
=
@
3
®
~
=
&

collision

Test i i g
Test

driver_set_velocity

lateral_deviation

« @ B ®

relative_yaw_angle Untested

relative_distance

relative_velocity

[=

v Test Fail

safe_distance
ego_acceleration

steering_angle

} Pass
ego_velocity

@ 4P

Untested

] 2 4 6 8 10 12 14 16 18

o Test

®

s (lateral_d tion) > 0.2, sec) < 5)

Fail

Archive

Properties o 2 4 3 8 10 12 14 16 18

Assess the controller performance using the MATLAB plot figures. There are two plots -- one for
assessing spacing performance and another for assessing lateral performance. For details on how to
evaluate these plots, see “Lane Following Control with Sensor Fusion and Lane Detection” (Model
Predictive Control Toolbox).

Testing a Lane-Following Controller with Simulink Test

00 ® Figure 1: Spacing Control Performance

~ File Edit View Insert Tools Desktop Window Help

NeEde @ 0B @

—
-~ egovelocity
— — setvelocity [
lead velocity

F Tee———
50 - — =
40 | 1 | | 1 | 1 1 |
0 2 4 6 8 10 12 14 16 18
AdBSESGibn
2F T T T T T ¥ =]
[ssomon)
—-./_"“__'__/_
35 ar ,r/ -1
e
=
2l -}
- 1 J 1 L | L b | — | |
0 2 4 6 8 10 12 14 16 18
CollisidH§t56R: 0 or 1
T T T T T T T T
05} .
0
| | | | 1 | 1 | |
0 2 4 6 8 10 12 14 16 18
time (sec)

6-43

6 Test Manager Test Cases

®0e Figure 2: Lateral Control Performance
File Edit View Insert Tools Desktop Window Help ¥

neds 3 0E 3

Lateral deviation

0.2 T T T T I
‘E’ 01 i
L
ks
s of
o
w®
8 -011 o
et
_02 1 l l 1 | I |
0 2 4 [8 10 12 14 16 18
time (sec) .
w1071 Relative yaw angle _ ./ & @ @ Q ﬁh_
g‘ g r:_|-| 1 I Jl) ‘ i relative yaw angle]
8 1 I S—
= 1 [d l l X 5.4 ‘: Lk [l]
g r J |‘rI 0
il | I My
St hJ N e ’J R L -
%] ||' | I]- LL / "LIJ"J" P '
° [.
= -3 I i | | i 1 2l r i .
0 2 4 [8 10 12 14 16 18
time (sec)
10713 Steering angle

15— - T+ T e S : — : -

F|JIH

| f |
Wlfv\ﬁ iy M' A \/f\l ﬁaﬁ/uﬂwf\,ﬂ; \J J; W m |

staenng angle (rad)

|
/ J Jh\f’L J\/J f w
-1 ' I ! ' \’ .—W:@

0 2 4 6 8 10 i2 14 16 18
time (sec)

\—J

Systematic Testing with the Test Manager

Open the LaneFollowingTestScenarios.mldatx test file in the Test Manager. The test file has a
set of nine test cases, one for each of the nine test scenarios described above.

sltestmgr;
sltest.testmanager.load('LaneFollowingTestScenarios.mldatx"');

6-44

Testing a Lane-Following Controller with Simulink Test

w O | 2> 8 D & il = & Ginpn B @

Now Opon Smve Deta Run Sop Dstwg Pl Foport Visualze Hon Eqon Profrences Holp
= o [e ¥ g .

]

ACC_ISO_TargetD:

ACC_ISO_Targ

JiscriminationTest

BenehExamgie mMuhaAC

scenariold = 1;
helperLFSetUp;

plotLFResults(sitest_simout. logsout) ;

Each test case uses the Post-Load callback to set the appropriate scenario ID and run the setup
utility. In addition, each test case also links to the corresponding requirement in the Requirements
Editor for traceability.

Run the tests by clicking the Play button or entering sltest.testmanager. run.

The results section of the Test Manager shows aggregated results for all nine test cases. For each test
case, the verify statements are aggregated to compute overall pass/fail results.

6-45

6 Test Manager Test Cases

s W sutrae x | [Visuallae x
[Finer resuits by name or 1ags, e.g. tags: tost H 7 B Test i i _gap < 0.8, sec) < 5)
i i Fail
= Results: 2018-Jul-16 21:52:01 se
= 1 LaneFollowingTest Scenarios je
~ (1 Scenarios se
» [§] ACC_ISO_TargetDiscriminationTest L]
» [ACC_ISO_AutoRetargetTest L} Pass fonee
» [ACC_ISO_CurveTest e
+ [i ACC_StopaGo L}
» [) LFACC_DoubleCurve_DecelTarget L]
» [§] LFACC_DoubleCurve_AutoRetarget L]
» [} LFACC_DoubleCurve_StopnGo o i
S e e 5 v 2 3] 3) 7 ' [0 " 2 5] s " 7] m
» [£) LEACC_Curve_CutinCut_TooClese o =
Fat
Pass -
Urniosed
v 2 3 B 5 s 7 s i o W 3 [W 3 [i W w
= L] |_deviation) > 0.2, sec) < 5)
Fai
L e M & S SR S NS— - el |
[
v 2 3 a s] 7 a n 0 " B) 0 W [7 m w

You can view the assessment figures in the test result summary pane.

6-46

Testing a Lane-Following Controller with Simulink Test

* SUMMARY
Name ACC ISO TargetDiscriminationTest
Outcome 1@
Start Time 07/17/2018 09:24:31
End Time 07/17/2018 09:25:08
Type Simulation Test
Test File Location /Users/kbalasub/work/Breactive/matlab/toolbox/simulinktest...
Test Case Definition &
Rerun Test Case [/
Tags

» Simulation Metadata

* TEST REQUIREMENTS

scenariold #1: ACC ISO TargetDiscriminationTest (LaneFollowingTestRequirements#1

v ERRORS

*LOGS

Output port 3 of 'LFRefMdl/MPC Controller' is not connected.

* DESCRIPTION

v MATLAB FIGURES

NAME
+ Simulation

Spacing Control Performance

Lateral Control Performance

Open the Requirements Editor and select Display > Verification Status to see a verification status
summary for each requirement. Green and red bars indicate the test results and a summary result for
the requirements set.

6-47

6 Test Manager Test Cases

ene Requirements Editer

Flo_Edt Dispay Anabysls Report Help
B O = Y PR a (S ~ Properties.
View: Reguirements [Search Type: Functional
s o oriios i
~ [LanefaliowingTestRequirem... [] Custom ID: [scenariold 11
2 scenariold .. - Summary: ACC_ISO_TargetDiscriminationTest
@a e - Fotonse
Es scenariold . . . Helvetica 13 B 7 U EEam - i
Ee scenariold ... LFACC DoubleCurve_sutoRe.. (D — L] g L HLs - B
E7 scenariold .. LFACC_DoubleCurveStopnGo (S ‘est Description ead car ird car
B e s Target Discrimination Test initial velocity = 30m/s constant accel 24mis — 24m/s
1 e 3 27m/s @ 2m/s?
) p—— Lt HWT = 2.2sec
! (HW = 66m) Vong = 27m/s (97.2kph)
v_set = 30m/s

Keywards:
¥ Revision information:

~ Links
= 4= Verified by:
& Acc_iso_TargetbiscriminationTest @

» Comments

Cleanup

Close all open windows and models.

close _system(mdl, 0);

clear mdl;
sltest.testmanager.clear;
sltest.testmanager.clearResults;
close(proj);
sltest.testmanager.close;
Simulink.sdi.close;

6-48

Synchronize Tests

Synchronize Tests

If you change the system under test, you can synchronize the test cases to reflect the model changes.
Also, if you remove model components, you can disable or delete test cases in the Test Manager when
you synchronize.

Synchronizing your test file automatically creates a new test case for:

* Each new scenario in the Signal Editor block at the top level of your model and the top level of
each test harness. The model must have only one Signal Editor block at those levels to create a
test case.

* Each new signal group in the Signal Builder block at the top level of your model and the top level
of each harness. Your model must have only one Signal Block at those levels to create a test case.

* Each new test harness in the model.
To synchronize your test file:

1 In the Test Manager Test Browser pane, hover over the test file name that you want to update.

Click the synchronization button 2 next to the test file name.
3 Follow the prompts to specify:

* The type of test file to create for the new components
* Whether to disable or delete out-of-date components

Disabled tests appear in the list in italic.

See Also

More About

. “Automatically Create a Set of Test Cases” on page 6-16

6-49

6 Test Manager Test Cases

Run Tests Using External Data

6-50

In this section...

“Mapping Status” on page 6-50

“Create a Test Case from an Excel Spreadsheet” on page 6-50
“Import an Excel Spreadsheet into a Test Case” on page 6-51
“Add Microsoft Excel File as Input” on page 6-52

“Add Test Data from Microsoft Excel” on page 6-52

“Add a MAT-File as an External Input” on page 6-52

You can run test cases using data defined in external MAT-files or Microsoft® Excel files. You can map
the data to your model (system under test [SUT]) using these mapping modes:

* The names of the inport block the signal data corresponds to

* The full block path name, that is, in the form system/block

* The name of the signal associated with the inport block

* Port number, that is, sequential port numbers of the inport blocks, starting at 1

You can add multiple external input files to a test case. After you add the files, select the one you

want to use in the test case from the External Inputs table. If you are using test iterations, you can
assign one input file to each iteration.

For more information about how Simulink handles inport mapping, see “Map Root Inport Signal
Data” (Simulink).

Mapping Status

When you map external inputs to model elements, the mapping can create these possible results.
These results appear under Inputs in the Test Manager interface in the Status column:

* Mapped — The mapping succeeded and no further action is needed.

* Failed — The mapping failed. Click the Failed link for more information.

* Warning — The mapping occurred with warnings. Click the Warning link to see whether you need
to address them

» Stale — This status can occur when you update your external inputs in Test Manager. A stale state
occurs if you did not map the new inputs. To address this status, click the Status link, which
opens the Add Input dialog box. Click Map Inputs to map the new input data and then click Add.

Create a Test Case from an Excel Spreadsheet

You can create a test case in Test Manager using the Create Test from Spreadsheet wizard. From
Simulink Test Manager, select New > Test from Spreadsheet. Select Use existing test data from
a spreadsheet and follow the prompts. You can use the following spreadsheet and model as an
example:

<matlabroot>\examples\simulinktest\coordinate tests.xlsx
coordinate transform test.slx

Run Tests Using External Data

In the Attributes page, make sure all attribute categories that exist in the spreadsheet are displayed.
Click Validate to map each input to the model by block name. If necessary, change the spreadsheet
and/or SUT and click Refresh and validate again. After a successful validation, save the test.

* The test case imports the spreadsheet. The fields defined in the spreadsheet are locked to the
spreadsheet, and cannot be edited in the Test Manager.

New Test Case 1 +| Enabled

coordinate test signals » Mew Test Suite 1 » Mew Test Case 1

Baseline Test
Select releases for simulation: | Current -

+' | Creaie Test Case from External File

File: | coordinate_tests. xlsx [] c

» TAGS . ' N ".H '__.-HW

~ PARAMETER OVERRIDES* &

FARAMETER SET / WORKSPACE WARIABLE | SHEETS OWERRIDEVALUE | SOURCE DELELEMENT | o=
= coordinate_test_signals xlsx Scenariol

Xscale 1

Yscale 1

= coordinate_test signals.xls... Scenario2
Xscale 1

Yscale 1

Note If you cannot see all the data in a column, click + in the upper right corner to hide other
columns and resize the desired column.

To change the locked fields, edit the spreadsheet outside of MATLAB.

Import an Excel Spreadsheet into a Test Case

If you have a test case and want to add test data to it from Excel spreadsheet, you must associate it
with the spreadsheet:

1 Open the test case.
2 Check the Create Test Case from External File option.

6-51

6 Test Manager Test Cases

6-52

3 Browse for the spreadsheet with the test data.

The input, parameter, and comparison signal data in the spreadsheet overrides the data in the test
case. The fields defined in the spreadsheet are locked to the spreadsheet. To edit, do one of the
following:

» Edit the spreadsheet outside of MATLAB and click Refresh for the File field.

* Clear the Create Test Case from External File option and edit the test case in the Test
Manager. Selecting this option again causes values in the spreadsheet to overwrite the values in
the test.

Add Microsoft Excel File as Input

You can import Microsoft Excel spreadsheets to use as inputs. You can import multiple sheets at once
and specify a range of data. Selecting sheets and specifying ranges is useful when each sheet
contains a different data set or the same file contains input data and expected outputs.

For information about the Excel file format, see “Format Test Case Data in Excel” on page 6-60.

In the test case, expand the Inputs section and click Add.
Browse to your Microsoft Excel file and click Add.
Select each sheet that contains input data. You can specify a range of data.

A W N =

If you want to use each sheet to create an input set in the table, select Create scenarios from
each sheet.

Under Input Mapping, select a mapping mode.

6 Click Map Inputs. The Mapping Status table shows the port and signal mapping.
For more information about troubleshooting the mapping, see “Understand Mapping Results”
(Simulink).

7 Click Add.

Add Test Data from Microsoft Excel

In the test case, expand the Inputs section and click Include input data in test result.
Under the External Inputs table, click Add.

In the Add Input dialog box, specify the Excel file name and the mapping mode, which specifies
how to map the Excel data to root-level Inport blocks in the model.

Click Map Inputs. The Mapping Status table shows the port and signal mapping.
5 Click Add.

See “Importing Test Data from Microsoft® Excel®” on page 6-54 for a complete example.

Add a MAT-File as an External Input

1 Inthe test case, expand the Inputs section and click Add.
2 Browse to the MAT-file and click Add.
3 Under Input Mapping, choose a mapping mode.

Run Tests Using External Data

4 Click Map Inputs. The Mapping Status table shows the port and signal mapping.

For information about troubleshooting the mapping status, see “Understand Mapping Results”
(Simulink).

5 Click Add.

See Also
sltest.testmanager.TestInput

More About

. “Map Signal Data to Root Inports” (Simulink)
. “Map Root Inport Signal Data” (Simulink)
. “Test Case Input Data Files” on page 6-57

6-53

6 Test Manager Test Cases

Importing Test Data from Microsoft® Excel®

Test a model using inputs stored in Microsoft Excel.

This example shows how to create a test case in the Test Manager and map data to the test case from
a Microsoft® Excel® file. Input mapping supports Microsoft Excel spreadsheets only for Microsoft
Windows®.

Create a Test File

1. Open the Test Manager. Enter

sltest.testmanager.view

2. In the test manager toolbar, select New > Test File. Save the file to a writable directory. The test
manager creates a test file with an empty baseline test case.

3. In the test browser, select the test case. In the test editor, under the System Under Test section,
enter sltestExcelExample.

Filter tests by name o tags, e.g. tags: tes

+ SYSTEM UNDER TEST

b ExternalExcelData®

6-54

New Test Suite 1

Model: sltestExcelExample E%RaAC

|=] New Test Case 1 » TEST HARNESS

» SIMULATION SETTINGS OVERRIDES

Configure the External Inputs.

1. Expand the Inputs section of the test case.

2. To include the input data in the test results, click Include input data in test result.
3. Under the External Inputs table, click Add.

4. In the Add Input dialog box, for File, select the sltestExampleInputs.xlsx from the matlab/
toolbox/simulinktest/simulinktestdemos directory. This file contains two tabs, named
Acceleration and Braking. Each tab represents a complete set of inputs for a single simulation.

5. In the Add Input dialog box,

* Select the Acceleration sheet from the sheets table.
* Select Mapping Mode : Block Name.

* Click Map Inputs.

* Click Add.

Importing Test Data from Microsoft® Excel®

Add Input

INPUT FILE SPECIFICATION

Add iterations to run this input

» SHEETS AND/OR RANGE SPECIFICATION
» INFUT MAPPING

Mapping Mode: | Block Name

v Compile the system under test
~ MAPPING STATUS
Successfully mapped inputs.

PORT BLOCK NAME MAPPED SIGHAL

1 sltestExcelExample/Throttle Throttle

2 sltestExcelExample/Brake BrakeTorque
» ADVANCED

File: C:\matlab\toolbox\simulinktest\simulinktestdemos\sltestExamplelnputs xis¥ = |l

| v Map Inputs

STATUS

The Mapping Mode controls the method used to map data from the Microsoft Excel sheet to root-
level Inport blocks in the model. For more information, see “Run Tests Using External Data” on page

6-50.

The test case shows the inputs mapped.

v INFUTS*

+| Include input data in test result

Stop simulation at last time point

EXTERNAL INPUTS

NAME FILE | SHEET

v Acceleration M Acceleration

STATUS

Mapped

6-55

6 Test Manager Test Cases

Run the Test
1. In the toolbar, click Run.

2. In the Results and Artifacts pane, you can plot signals from the external inputs or the simulation

output.
W Throttle
13.8 —
13.8 S
134 b——
o 5 10 15 20 25 30 35 40 45
W ShiftLogic:1
3
2
1 4
o 5 10 15 20 25 30 35 40 45
B ImprellerTorque
150
100
50 e LN
o 5 10 15 20 25 30 35 40 45

6-56

Test Case Input Data Files

Test Case Input Data Files

You can use Test Manager to create MAT-file and Microsoft Excel data files to use as inputs to test
cases. You generate a template that contains the signal names and the times, and then enter the data.

Creating a data file also adds the file to the list of available input files for the test case. After you add
input data, you can then select the file to use in your test case.

You can create files for input data only for tests that run in the current release. To select the release,
in the test case, use the Select releases for simulation list.

You can edit input files. After you create the template, select the file from the list of input files and
click Edit. MAT-files open in the signal editor. Excel files open in Excel.

Selecting the Add an iteration that runs this input check box adds an iteration to the test case
under Table Iterations and assigns the input file to it. After you create the input file, continue to
specify the iteration. For more information on iterations, see “Test Iterations” on page 6-85.

Generate an Excel Template

You can generate a template test spreadsheet from a model or harness (system under test [SUT]). You
can then complete the spreadsheet with external data and import it into Simulink Test as a test case.

The Create Test from Spreadsheet wizard parses the SUT for test attributes and automatically
generates a template spreadsheet and a test case:

* Inputs — Inputs are characterized by root input ports
* Parameters — Named parameters in the model

* Comparison signals — Logged signals and output ports

The wizard allows you to filter and edit the attributes needed for testing. The resulting spreadsheet
has separate column sets for inputs, parameters, and comparison signals. If multiple iterations are
required, a separate sheet in the same file is generated for each scenario. You can expand the
spreadsheet to add time-based signal data, tolerances, and parameter overrides. See “Format Test
Case Data in Excel” on page 6-60 for the full description of the format readable by Simulink Test.

You can use the model coordinate transform test as an example for the process. The model
must be on the MATLAB path.

1 Open the test manager. On the Apps tab, under Model Verification, Validation, and Test, click
Simulink Test. Then, on the Tests tab, click Simulink Test Manager.

2 Open the wizard. From Simulink Test Manager, select New > Test from Spreadsheet. Select
Create a test template file for specifying data and follow the prompts.

3 In the Attributes page, select which attribute categories are to be included in the spreadsheet.
For example, if parameter overrides are not necessary for the tests, clear Parameters. The
attribute categories shown on the page are derived from the SUT. Comparison signals are always
shown.

4 If the test requires all attributes in a category as is, select Yes, include all attributes in the
spreadsheet and click Next. If not, select No, I want to filter and edit the attributes. This
shows a page with a tab for each attribute category.

6-57

6 Test Manager Test Cases

5 Ifyou are filtering the attributes, in the Parameters and Comparison tabs, clear the attributes
that are not needed. For example, you can remove a logged signal from this list if it is not to be
used for comparison in the tests.

6 Optionally change tolerances in the Comparison page. The tolerance settings apply to all signals
in the list. To specify different tolerances for each signal, edit the spreadsheet after it is
generated.

Inputs Parameters | Comparison

Select signals below to participate in baseline comparnsons

(* Refresh

". A E _E::
o pixels_x linear
& pixels_y linear

Tolerance settings (applies to all signals):

Absolute: 0.001 | Relative 0.1 Leading: 0 Lagging: 0

If you change the SUT during the selection process, click Refresh to synchronize the attribute
lists with the SUT. Once selection is complete, click Next and keep following the prompts.

7 In the Scenarios page, specify the number of test scenarios and a base name for the sheets in
the spreadsheet.

If comparison signals are selected, the wizard runs the model to capture the baseline. Make sure that
the model does not run indefinitely by setting a finite stop time. The wizard creates two files:

» Excel spreadsheet — The spreadsheet includes columns for inputs, parameters, and comparison
signals. Inputs and comparisons have different time bases. An identical sheet for each test
scenario is generated. Complete the spreadsheet outside MATLAB to uniquely define each
scenario.

6-58

Test Case Input Data Files

time lMagnitude Angle Parameter: Value: time point.pixels_x point.pixels_y

AbsTol: 0.001 AbsTol: 0.001

RelTol: 0.1 RelTol: 0.1

BlockPath: coordinate_transform/Screen coordinates BlockPath: coordinate_transform/Screen coordinates
Source: Input Source: Output

] 0 0 Xscale 1 0 0 0
10 4] 0 Yscale 1 0.2 4] 1]
04 1] 1]
0.6 0]
0.8 o o

Test file — The test case imports the Excel spreadsheet. The fields defined in the spreadsheet are
locked to the spreadsheet, and cannot be edited in the Test Manager.

New Test Case 1 +| Enabled

coordinate test signals » Mew Test Suite 1 » Mew Test Case 1

Baseline Test

Select releases for simulation: | Current -

+' | Creaie Test Case from External File

File: | coordinate_tests. xlsx [] c

P TAGS

~ PARAMETER OVERRIDES* &

FARAMETER SET / WORKSFACE WARIABLE | SHEETS OVERRIDE VABLUE | SOURCE MODEL ELEMENT | ==
= coordinate_test_signals xlsx Scenariol -
Xscale 1
Yscale 1

= coordinate_test_signals.xls... Scenario2
Xscale 1

Yscale 1

To change the locked fields, edit the spreadsheet outside MATLAB.If you change a parameter, you
must capture the baseline again by clicking the Capture button.

6-59

6 Test Manager Test Cases

6-60

+~ BASELINE CRITERIA* &

Include baseline data in test result

2 Scenariol
2 Scemario?

2 Scemario3

SHEE ABS TOL REL TOL LEADING TOL |LAGGING TOL |
Scenaricl 0 0.00% 1] 0]
Scenarie2 0 0.00% 0 0
Scenariod 0 0.00% 0 0
. B
Add... o Capture... ¢ Edit.. Refresh g Visualize Delete

Format Test Case Data in Excel

You can specify signal data in a Microsoft Excel file to use as input to your test case or as baseline
criteria (outputs). The Excel file includes time and signal data. To support a range of models and
configurations, you can specify signal data of most data types. For exceptions, see “Limitations” on
page 6-66. You can indicate whether signals are scalar, multidimensional, or complex. You can
optionally specify the data type, block path and port index, units, interpolation type, and function-call

execution times.

Basic Excel File Format

The figure shows the basic format of the Excel file. This example uses scalar signals and the default
data type, double, for all signals.

A E C
i time signall signal2 signal3
2] 1 2
3 2 2 4 8
4 4 3 6 12
5 6 4 8 16

* When specifying time and signal data (and not function-call execution times), the time column is
the first column. Time values must increase in value, and every cell must contain a value. .

Include one column for each input signal in the first row. In each column, include the signal data

for each time point. Signal names are case-sensitive.

If dataset elements have different time vectors, the spreadsheet can have more than one time

column. In this case, the columns to the right of each time column, up to the next time column,
define signals along that time vector. The signal columns must have the same number of rows as
the time column they define values for. The figure shows an example that has a time column for

each time vector.

Test Case Input Data Files

A B i€ D E F
L time mySignal(1,3) mySignal2 time mySignal3 mySignald
2 0 1 0.87 1.1 3 4
3 2 2 0.54 1.2 6 8
4 4 3 1.2 1.3 9 12
5 6 4 1.63
7] 8 5 1.8

When you import data, you specify the mapping mode. To map using signal or block names, add the
block or signal names and qualifiers in the first row. If you are mapping using block path and name,
also specify them in the optional rows (see “Block Path and Port Index” on page 6-64). If you are
mapping using port numbers, signal columns map to the model ports in order during import, ignoring
the block or signal names.

Input and Output Data

You can save inputs and outputs in the same Excel file in the same sheet. Specify whether the signals
are for inputs or outputs in one of the optional rows, using Source:Input or Source:Qutput as the
label. Keep all the inputs together and all the outputs together.

A = C D E F

L time Datal Data2 time outl out2

2 Source:input Source:lnput Source:Qutput Source:Cutput
3 1 0.23 1 0.23
4 2 3 1.23 2 3 1.23
5 3 4 2.23 3 4 2.23
& 4 5 3.23 4 5 3.23
7 5] 4.23 5] 4.23
8] 7 5.23] 7 5.23

To import the file as input data, use the Inputs section of the test case, described in “Run Tests Using
External Data” on page 6-50. To use the Excel file as expected outputs, select it to add as baseline
data, in the Baseline Criteria section of the test case, described in “Baseline Criteria” on page 6-
118.

When you capture inputs and expected outputs in Test Manager, you can save inputs and outputs to
the same Excel file. Both sets of data are saved to the same sheet unless you specify a different sheet.
Saving the inputs or expected outputs adds the file to the test. See “Capture Baseline Criteria” on
page 6-118.

Parameters

You can save parameter override values in the same Excel file in the same sheet. Specify the name of
the parameter in the Parameter: column and the override value in the Value: column. Each row
corresponds to a parameter. Enter vector and matrix parameters as you would in MATLAB. You can
also use MATLAB expressions for parameter values. Values are read as strings and are evaluated at
runtime. Signal data and parameter data start on the same row.

time Magnitude Angle Parameter: Value:
Source: Input
i} 1 90 Xscale [123]
10 1 90 Yscale 1

6-61

6 Test Manager Test Cases

6-62

The Parameter column must precede the Value column and both columns are required. For
unnamed parameters or parameters in a masked subsystem, add a third column, BlockPath, and
enter the path to the block.

Parameter: Value: BlockPath:

Gain 4| myBlockParameter/Gain

Signal Tolerances

You can specify tolerances for comparison signals in the Excel file. It is possible to define one or more
tolerance types for each signal, in any order. Prefix the tolerance value with one of: AbsTol:,
RelTol:, LeadingTol:, LaggingTol:. The format is <ToleranceType>:<ToleranceValue>.

time point.pixels_x point.pixels_y
AbsTol: 0.001 AbsTol: 0.001
RelTol: 0.001 RelTol: 0.001

LeadingTol:0.0001
LaggingTol: 0.00001
BlockPath: coordinate_transform/Bus Creator BlockPath: coordinate_transform/Bus Creator
Source: Qutput
]] 1

Tolerances are interpreted as floating-point doubles. Each tolerance type should be in a dedicated
row. Once a row is declared to be a certain type of tolerance, all columns in that row must be of that
type. An empty cell is treated as tolerance of zero. For more information on tolerances, see “Compare
Model Output To Baseline Data” on page 6-7.

Simulation for Equivalence Tests

When you perform equivalence tests in Test Manager, you compare the results of two simulations. If
your Excel input file is for an equivalence test, you can specify the inputs for each simulation. Specify
the simulation in one of the optional rows, using Simulation:1 or Simulation: 2 as the label.
Keep the inputs for each simulation together.

A B C] E F
signall signal2 time signall signal2
2 |Simulation: 1 Simulation: 2
3 1} 2 1.7 1} 4 2.3
4 1 3 4 1 3 b
3 2 4 7.3 2 b E

Scalar, Multidimensional, Complex, and Bus Signals

In addition to scalar signal names, you can indicate multidimensional, complex, and bus signals, or a
combination of these. The figure shows some examples.

Test Case Input Data Files

(@ time signall{1,3) signal2(real) signal3(3) (imag) mybus.x
2] 1 2 1.1

2 2 2 4 1.2 8
4 4 3 6 1.2 12
5 6 4 8 1.4 16

Specify block paths, and optionally, port index in one of the optional rows. See “Block Path and Port
Index” on page 6-64.

Base Name

Names are case-sensitive.

Multidimensional Signals
Use parentheses with the signal dimension after the signal name. For example:
* mySignal(1l,3)

Dimensions on the signal that you do not specify default to zeros of the same data type and
complexity as the dimensions that you specify.

Complex Signals
For complex signals, use (real) or (imag) with the signal name. For example:

* mySignal (real)
* mySignal (imag)
* mySignal(1,3) (imag)

If you do not specify a real counterpart to an imaginary number, the real value defaults to zeros.
Bus Signals

Specify bus signals in the form signalname.busElement.nestedElement for as many nested
elements as the bus has. For example:

* myBusSignal.x
* busSignal2.x.z

Suppose the inport block myBus is a bus object with this structure:

W E Base Workspace
v = BusObject
— a
v = x(BusObject3)
o
= BusObject3

In this case, specify the signal as myBus.a.w.

The figure shows an example of specifying bus signals with a bus data type (see “Data Type” on page
6-64). The BusObj data type also applies to the columns to the right because the base name for
these signals is the same.

6-63

6 Test Manager Test Cases

L time myBus.x myBus.x.y myBus.X.y.Z
2 Bus: BusObj

2 a 1 4 1.1
4 0.2 3 8 1.2
5 0.4 5 12 1.3
& 0.6 7 16 1.4

Block Path and Port Index

If you want to specify the signal using the block path, enter it in one of the optional rows in the form
BlockPath: path to block. When you specify a block path, you can also specify the block port
index. The default port index is 1. Enter the port index in the row following the block path in the form
PortIndex: port number. For example:

* BlockPath: mymodel/myblock
* PortIndex: 2

A B
1
BlockPath:
2 myModel/myblock
3 Portindex: 2
4 0 1
5 2 2

Data Type, Unit, Interpolation, and Block Path/Port Index

In the optional rows between the signal name and the time and signal data, you can include any
combination of information about the signal:

* Data type

* Units

* Interpolation

* Block path and port index (see “Block Path and Port Index” on page 6-64)

Data Type
Enter data types in the row after the signal name. The default data type is double.

You can mix data types in the same row, but you must use the same data type for all columns of a
multidimensional or complex signal.

You can leave the columns to the right of the data type declaration empty if that data type applies to
the signal data in those columns. For example, here the data type int16 applies to columns B and C
because they are dimensions of the same signal.

A E < D
i time intsignal(1) intsignal(2} enumSignal
2 Type: intle Enum: color
3 0 1 2 blue
4 0.2 2 4 green
5 0.4 3 & yellow

6-64

Test Case Input Data Files

Built-In MATLAB Data Types

Specify built-in MATLAB data types supported in Simulink in the form Type: data type. See “Data
Types Supported by Simulink” (Simulink). For example:

* Type: intl6
* Type: uint32

Enumerations
Specify an enumeration data type in the form Enum: class. For example:
* Enum: school

The data in the cells correspond to enumerated values. For example:

A E C
time signall signal2
Enum: color
1 blue
2 green
3 yellow

1
2
3
4
5
6 4 red

[= I R S R ==

Enum data type dimensions that do not have data default to the default enumeration value.

Fixed Point

Indicate a fixed-point data type using the prefix Fixdt :, followed by the data type in one of these
forms:

* A fixdt constructor, for example, Fixdt: fixdt(1,16).

* A unique data type name string, for example, Fixdt: sfix16 B7. To learn about specifying data
type names, see “Fixed-Point Data Type and Scaling Notation” (Fixed-Point Designer).

* Anumerictype object in the base workspace, for example, Fixdt: mytype.
Bus
Specify the bus object in the form Bus: bus object with a bus signal. For example:

* Bus: BusObjectl

To specify a bus signal, see “Bus Signals” on page 6-63.

Alias

Specify an alias data type in the form Alias: alias type. To learn about alias data types, see
Simulink.AliasType.

Units

Optionally, include a row for units. Specify units in the form Unit: units. You can specify units and
physical quantity. For example:

 Unit: ¢

6-65

6 Test Manager Test Cases

6-66

* Unit: kg@mass
Interpolation

Optionally, include a row for interpolation. The default is linear. Specify interpolation as Interp:
zoh or Interp: linear.

Synchronization

Optionally, include a row for synchronization. The default is union. Specify synchronization as Sync:
unionor Sync: intersection.

Function-Call Execution Times

If the model contains control signals for function-call subsystems, add columns for each one before
the first time column. Enter the control signal name in the column heading. Enter the points of time
when you want to execute the function call in the column.

Function-call execution times that you specify are independent of the times in the time column. The
figure shows how to format two function-call blocks that execute at various times. The time and
signal data and data type information are independent of the function-call information.

A E < D E

il fcnCalll fenCall2 time mysignal(1,3) mysignal2

2 Type: intl6

3 0.1]] 1.1 6
4 0.1 2 1 1.6 7
5 0.8 4 2 2.1 8
& 1.3 3 2.6 9
7 4 3.1 10

Limitations

Arrays of buses as a data type are not supported.

Create a MAT-File for Input Data

1 In the test case, under System Under Test, specify the model whose input data you want to
create a MAT-ile for.

2 In the Inputs section of the test case, click Create.

3 In the dialog bogx, set the file format to MAT - file. Specify the location for the MAT-file and click
Create.

The signal editor opens.

4 Inthe Scenarios and Signals pane of the signal editor, expand the data node. Then select the
signal whose data you want to add.

5 Specify the signal data. Select the data type from the list, and enter the time and signal data for
the signal.

Test Case Input Data Files

SIGNAL EDITOR B L@
i Fi= Move Up 5
':E:' L % T =pgus [f] Function cal EE| ‘a QG By |
Move Down
Mew Open Save Scenario Signal = Ground {0} Defaults Duplicate & W [E] Data
- - -] Delete ~ Cursorsv
FILE | INSERT | ADJUST | ZOOM & FAN | MEASURE | a
SCENARL.. | PLOT
° inpDS.In1
4 inpDS 1
= In1 |
b= In2 L
o
1 -
= inpDS&.In1
| | & | |4, | | boolean -|
TIME DATA
0 false
10 false

6 To update your signal data, click Apply.
7 After adding the signal data, click Save.

See Also
sltest.testmanager.BaselineCriteria | sltest.testmanager.TestInput

More About

. “Run Tests Using External Data” on page 6-50
. “Select Releases for Testing” on page 6-112

. “Run Tests Using External Data” on page 6-50
. “Baseline Criteria” on page 6-118

6-67

6 Test Manager Test Cases

Capture Simulation Data in a Test Case

6-68

Capture signal data in your test results by adding signals to the Simulation Outputs section of the
test case. Each output is called a logged signal. Signals listed in Simulation Outputs appear in the
test results along with signals that are already selected for logging in Simulink.

You can use logged signals for data comparison in baseline criteria, equivalence criteria, custom
criteria, and for data visualization in the Simulation Data Inspector. Logged signals enable you to
further test your Simulink model without changing the model. In addition to signals from the top
model, you can also log signals from subsystems and model references. You can select signals
associated with local and global data store memory, and from data store memory that uses a
Simulink.Signal object.

Add Logged Signals in the Test Manager

To add signals:

1 Open the model sltestFlutterSuppressionSystemExample.

2 In the Test Manager, under Simulation Outputs, click Add.

3 In the system under test, highlight blocks or signals that you want to log. To select multiple
items, click and drag a selection box over multiple items.

4 A dialog box appears. Select signals in the dialog box.

Contraller

| Error TE Pos —‘ TE Position (deg)

#{ Mach Lift —ﬂ Lift

(Al () Moment —‘ Fitching

Aero Forces Connect

[

T Aero Forces:

[¥5]
%}

T Aero Forces:
1= Controller:1

sib. If list is incomplete, click to update diagram.

5 Continue adding signals to the test case. Each time you select a signal, the dialog box also shows
previously logged signals. You can remove a signal from logging by clearing the selection.
6 The signals appear in the Logged Signals table in the test case.

Capture Simulation Data in a Test Case

= « Signal Set 1

« | fero Forces:1 sltestFlutterSuppression. .. 1
+ | Aero Forces:2 slitestFlutterSuppression. .. 2
+ | Controller:1 sltestFlutterSuppression. .. 1
e
Plot signals on the specified plots after simulation + Add '|]']]' Delete

7 To add a signal set, click the Add arrow and select Signal Set.

8 To specify a specific plot for a signal, enter a number in the Plot Index column. By default, the
signals appear on one plot.

You can specify to display the plot immediately after running the test by selecting the Plot
signals on the specified plots after simulation check box.

After you run the test, the logged signals appear in the test case results under Sim Output. Select
each signal to display on the plot. If you specify a plot index, the signal appears in the plot number
you specified.

Capture Data from Local and Global Data Stores

Perform similar steps to add simulation output associated with data store memory:

1 Open the model sldemo mdlref dsm, which contains local and global data store memory.

2 In atest case, from the top model, add the Sine Wave block for logging.

3 Click on the Data Store Read block in the top model. Click on the click to update diagram box.
The dialog box displays the signal associated with the block and the data associated with the
Simulink.Signal object in the base workspace. The model displays the signal storage class for
the block, (global).

6-69

6 Test Manager Test Cases

6-70

4 sldemo mdlref dsm bot2 N
™ In1 Qut1
T
N A —P‘Aﬂ\
(global) \
ErrorCond h"
Data Store Read Connect
= Sine Wave:1
Eldemo_mdlref_dsm_] EE| ErrorCond (base workspace)
] = Data Store Read: 1
In1

é If list is incomplete, click to update diagram.

Select both signals in the dialog box.

Double-click the model reference sldemo mdlref dsm bot to open it, and then open the
subsystem PositiveSS. Select the Data Store Write block. The table displays the input signal
from the Gain block and the data store memory, RefSignalVval.

RefSignalVal

D SW Connect

H EmorCond (base workspace
= Sine Wave:1

= Data Store Read:1

[] T Gain:l

] O RefSignalval

é If list is incomplete, click to update diagram.

Select the RefSignalVal data store memory for logging. The dialog box uses a different icon to
indicate the data store memory.

Finish selecting signals by clicking Done in the Test Manager window. In the Test manager, the
signals appear under Logged Signals. The Source column displays the full path information for
each signal. For the signal associated with the Simulink.Signal object, Source displays the
workspace location of the Simulink.Signal object.

Capture Simulation Data in a Test Case

LOGGED SIGNALS

w Signal Set 1

+'|Data Store Read:1

sldemo_mdiref_dsm/Data Store Read 1

+'|ErrorCond hase workspace

+' RefSignalval sldemo_mdiref_dsm/A/DSM

+ | 5ine Wave:l sldemo_mdlref_dsm/Sine Wave 1

Flot signals on the specified plots after simulation

See Also

Simulink.Signal | sltest.testmanager.LoggedSignal |
sltest.testmanager.LoggedSignalSet | sltest.testmanager.TestCase

More About

“Assess Simulation and Compare Output Data” on page 3-11
“Compare Model Output To Baseline Data” on page 6-7

6-71

6 Test Manager Test Cases

Run Tests in Multiple Releases

6-72

If you have more than one release of MATLAB installed, you can run tests in multiple releases. This
option lets you run tests in releases that do not have Simulink Test, starting with R2011b.

While you can run test cases on models in previous releases, the release you run the test in must
support the features of the test. If, for example, your test involves test harnesses or test sequences,
the release must support those features for the test to run.

Before you can create tests that use additional releases, add them to your list of available releases
using Test Manager preferences. See “Add Releases Using Test Manager Preferences” on page 6-73.

Considerations for Testing in Multiple Releases
Testing Models in Previous or Later Releases

Your model or test harness must be compatible with the MATLAB version running your test.

* Ifyou have a model created in a newer version of MATLAB, to test the model in a previous version
of MATLAB, export the model to a previous version and simulate the exported model with the
previous MATLAB version. For more information, see the information on exporting a model in
“Save the Model” (Simulink).

* To test a model in a more recent version of MATLAB, consider using the Upgrade Advisor to
upgrade your model for the more recent release. For more information, see “Consult the Upgrade
Advisor” (Simulink).

Test Case Compatibility with Previous Releases

When performing testing in multiple releases, the MATLAB version must support the features of your
test case. Previous MATLAB versions do not support test case features unavailable in that release.
For example:

» Test harnesses are supported for R2015a and later.

» The Test Sequence block is supported for R2015a and later.

* verify() statements are supported for R2016b and later.

Test Case Limitations with Multiple Release Testing

Certain features are not supported for multiple release testing:

» Parallel test execution

* Running test cases with the MATLAB Unit Test framework

* Real-time tests

* Input data defined in an external Excel document

* Coverage collection in the Test Manager

* Generating additional tests using Simulink Design Verifier to increase coverage
* Including custom figures from test case callbacks

Run Tests in Multiple Releases

Add Releases Using Test Manager Preferences

Use a Test Manager preference to add to the list of release to run tests in. You can delete a release
that you added to the list. You cannot delete the release from which you are running Test Manager.

1
2

In the Test Manager toolstrip, click Preferences.

In the Preferences dialog box, click Release. The Release pane lists the release you are
running Test Manager from.

In the Release pane, click Add.
Browse to the location of the MATLAB release you want to add and click OK.

Run Baseline Tests in Multiple Releases

When you run a baseline test with Test Manager set up for multiple releases, you can:

Create the baseline in the release you want to see the results in, for example, to try different
parameters and apply tolerances.

Create the baseline in one release and run it in another release. Using this approach you can, for
example, know whether a newer release produces the same simulation outputs as an earlier
release.

Create the baseline.

1

w

N oo »u A

Make sure that the release has been added to your Test Manager preferences.
Create a test file, if necessary, and add a baseline test case to it.

In the test case, from the Select release for simulation list, select the releases you want to run
the test case in.

Under System Under Test, enter the name of the model you want to test.
Set up the rest of the test.
Capture the baseline. Under Baseline Criteria, click Capture.

Select the release you want to use for the baseline simulation. Specify the file format and save
and name the baseline.

For more information about capturing baselines, see “Capture Baseline Criteria” on page 6-118.

After you create the baseline, you can run the test in a release available in the Test Manager. Each
release you select generates a set of results.

1

In the test case, set Select releases for simulation to the releases you want to use to compare
against your baseline. For example, select only the release for which you created the baseline to
perform a baseline comparison against the same release.

Specify the test options.
From the toolstrip, click Run.

For each release that you select when you run the test case, pass-fail results appear in the

Results and Artifacts pane. For results from a release other than the one you are running Test
Manager from, the release number appears in the name.

6-73

6 Test Manager Test Cases

6-74

Results and Ariifacts

» Results-14a: 2017-May-22 15:14:39 1®
v Results: 2017-May-22 15:14:39 1@

Run Equivalence Tests in Multiple Releases

When you run an equivalence test, you compare two simulations from the same release to see if
differences in the simulations are within the specified tolerance.

Make sure that the release has been added to your Test Manager preferences.

Create a test file, if necessary, and add an equivalence test case to it.

In the test case, from the Select release for simulation list, select the releases you want to run
the test case in.

4 Under System Under Test, enter the model you want to test.
Set the values under Simulation 1 and Simulation 2 to use as the basis for testing.

To set tolerances for the logged signals, under Equivalence Criteria, click Capture. Select the
release you want to use for capturing the signals, and click OK. Clicking Capture copies the list
of the signals being logged in Simulation 1. Then set the tolerances as desired.

7 In the toolstrip, click Run.
The test runs for each release you selected, running the two simulations in the same release and
comparing the results for equivalence. For each release that you selected when you ran the test

case, pass-fail results appear in the Results and Artifacts pane. For results from a release other
than the one you are running Test Manager from, the release number appears in the name.

Resulfs and Ariifacts

» Results-14a: 2017-May-22 15:14:39 1@
» Results: 2017-May-22 15:14:39 1@

Run Simulation Tests in Multiple Releases

Running a simulation test simulates the model in each release you select using the criteria you
specify in the test case.

Make sure that the release has been added to your Test Manager preferences.

Create a test file, if necessary, and add a simulation test case template to it.

In the test case, from the Select release for simulation list, select the releases you want to run
the test case in.

4 Under System Under Test, enter the model you want to test.
Under Simulation Outputs, select the signals to log.

Run Tests in Multiple Releases

6 In the toolstrip, click Run.

The test runs, simulating for each release you selected. For each release, pass-fail results appear
in the Results and Artifacts pane. For results from a release other than the one you are running
Test Manager from, the release number appears in the name.

Resulfs and Ariifacts

» Results-14a: 2017-May-22 15:14:39 1@
» Results: 2017-May-22 15:14:39 1@

See Also
sltest.testmanager.getpref | sltest.testmanager.setpref

More About

. “Select Releases for Testing” on page 6-112

6-75

6 Test Manager Test Cases

Examine Test Failures and Modify Baselines

6-76

After you run a baseline test in the Test Manager, you can update the baseline. For example:

If you changed your model, you can use the new simulation output as the baseline. You can
examine the failures that occurred because of the differences and update the baseline with part or
all of the new output. See “Examine Test Failure Signals and Update Baseline Test” on page 6-76.

If your test plan changed and you expect different outputs, you can manually edit the time points.
See “Manually Update Signal Data in a Baseline” on page 6-78.

Examine Test Failure Signals and Update Baseline Test

Suppose that you run a test against a baseline and the result does not match the baseline, causing
test failure. It is possible that the newer simulation better represents your desired test results or that
some of the points of failure are your preferred results. You can examine the signal and failures in the
data inspector view in Test Manager and decide whether you want to update the baseline or sections
of the baseline.

Suppose that your model uses a new solver. When you run the test case, the results do not match,
causing the test to fail.

Open the test file that contains the baseline test case you want to run.
Select the test case and run it.

If the test fails, in the Results and Artifacts pane, expand the Baseline Criteria. Select a signal
that failed that you want to examine.

When you select the signal, the data inspector view opens. The top graph is the baseline
simulation signal overly. The bottom is the difference between those signals and the tolerance.
You can adjust tolerances in the pane in the lower-left corner of the Test Manager. This example
shows an absolute tolerance of . 2.

Examine Test Failures and Modify Baselines

Results and Arfifacts [l stertPage x [E] New TestCase 1 x | &5 Comparison x
| \? M Sum:1 (Baseline) M Sum:1 (Compare To) B Tolerance
~ Results: 2017-Jun-02 10:45:20 10
~ [] New Test Case 1]
~ [zl Baseline Criteria Result [
® Sum:1 [}
O x1 =]
v il Sim Qutput (vdp : normal)
] % 3
PROPERTY WALUE 0 1 2 3 4 5 8 7 g 9 10
Name Sum:1 - W Difference W Tolerance
Status] s
Absolute Tolerance 02
Relative Tolerance 0.00% 1.0
Leading Tolerance 0
Lagging Tolerance 0 0.5
Block Path vdp/Sum
Port 1 0
Interp Method lingar
Sync Method union 0.5
Max Diff 1.574029211040108
Baseline: Units -1.0
Baseline: Sample Time Continuous
Baseline: Data Type double 15
Compare To: Units

4 To examine each failure, in the toolstrip, click Next Failure or Previous Failure. Each
contiguous set of failed signal comparison points makes up one region. Data cursors show the
bounds of each region.

6-77

6 Test Manager Test Cases

6-78

M Sum:1 (Baseline) W Sum:1(Co

i
4 i
II
II
IIII
z |
1.0
T 0.8
/\ .";' DB
106
" -16 *
-1.8
-19
-4 20

o+ KEN: s

M Difference M Tolerance

1
0.5 o
|
{020 0.20
o -0.02 ¥]l 0.04 P
-0.20 || [Lozo]
|

o+ KEN: s

5 You can update the baseline data to use newer simulation results using the Update Baseline

menu.

* To update the entire signal, select Update Baseline Signal.
* To update only the data in the failure region, select Update Selected Signal Region.
* To replace all the signal data in the baseline with the new data, select Update All Signals.

Manually Update Signal Data in a Baseline

If your model changes such that you expect a different simulation output, you can update all or part
of the baseline signal data. If the baseline is a MAT-file, you can edit the data in the signal editor.

Microsoft Excel files open in Excel.

To update signal data in a MAT-file baseline:

1 Open the test file that contains the baseline you want to edit.

Examine Test Failures and Modify Baselines

gua A W N

6
7

Select the test case.

Under Baseline Criteria, select the baseline whose signal data you want to edit. Click Edit.
The signal editor opens. In the Scenarios and Signals pane, expand the data node.

Select the check box next to the signal whose data you want to edit.

. [E]

=
=

SCENARIOS AND SIGNALS
data

x1

PLOT

L]

[+]

0 1

data.x1

0.00010047545726038319

0.000602852743562299

0.0031147391750718785

0.015674171332619776
0.07847133212035926
0.28439872563113655
0.5406954944717497
0.87878458982919935
1.2787845982919936
1.6787845982919936
2.0787845982019935
2.4787845982919934
2.87878455982919933

DATA

2
1.9999999899056968
1.9999996367875772
1.999990328555064
1.9997581309018742
1.9943001777229783
1.9379231096671776
1.815487704659629
1.5990144512505253
1.2687416768223343
0.8232220579660026
0.17250610732386962
-0.7844010202322268
-1.7105641481146283

Tip To see the time and data for points, display a data cursor and drag it along the signal.

Edit the signal data in the table, and then click Apply.

To update the baseline with the new expected output data, click Save.

6-79

6 Test Manager Test Cases

See Also

More About

. “Create and Edit Signal Data” (Simulink)
. “Inspect Simulation Data” (Simulink)
. “Compare Model Output To Baseline Data” on page 6-7

6-80

Create and Run Test Cases with Scripts

Create and Run Test Cases with Scripts

In this section...

“Create and Run a Baseline Test Case” on page 6-81
“Create and Run an Equivalence Test Case” on page 6-82
“Run a Test Case and Collect Coverage” on page 6-82

“Create and Run Test Case Iterations” on page 6-83

For a list of functions and objects in the Simulink Test programmatic interface, see “Test Scripts”.

Create and Run a Baseline Test Case

This example shows how to use sltest.testmanager functions, classes, and methods to automate
tests and generate reports. You can create a test case, edit the test case criteria, run the test case,
and generate results reports programmatically. The example compares the simulation output of the
model to a baseline.

% Create the test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('API Test File');

ts = createTestSuite(tf, 'API Test Suite');

tc = createTestCase(ts, 'baseline', 'Baseline API Test Case');

% Remove the default test suite
tsDel = getTestSuiteByName(tf, 'New Test Suite 1');
remove(tsDel);

% Assign the system under test to the test case
setProperty(tc, '"Model', 'sldemo absbrake');

% Capture the baseline criteria
baseline = captureBaselineCriteria(tc, 'baseline API.mat',true);

% Test a new model parameter by overriding it in the test case
% parameter set

ps = addParameterSet(tc, 'Name', 'API Parameter Set');

po = addParameterOverride(ps, 'm',55);

% Set the baseline criteria tolerance for one signal
sc = getSignalCriteria(baseline);
sc(1l).AbsTol = 9;

% Run the test case and return an object with results data
ResultsObj = run(tc);

% Open the Test Manager so you can view the simulation
% output and comparison data
sltest.testmanager.view;

% Generate a report from the results data

filePath = 'test report.pdf';

sltest.testmanager.report(ResultsObj,filePath, ...
"Author', 'Test Engineer',...
"IncludeSimulationSignalPlots', true, ...
"IncludeComparisonSignalPlots',true);

6-81

6 Test Manager Test Cases

6-82

The test case fails because only one of the signal comparisons between the simulation output and the
baseline criteria is within tolerance. The results report is a PDF and opens when it is completed. For
more report generation settings, see the sltest.testmanager. report function reference page.

Create and Run an Equivalence Test Case

This example compares signal data between two simulations to test for equivalence.

% Create the test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('API Test File');

ts = createTestSuite(tf, 'API Test Suite');

tc = createTestCase(ts, 'equivalence', 'Equivalence Test Case');

% Remove the default test suite
tsDel = getTestSuiteByName(tf, 'New Test Suite 1');
remove(tsDel);

% Assign the system under test to the test case

% for Simulation 1 and Simulation 2

setProperty(tc, '"Model', 'sldemo absbrake', 'SimulationIndex',1);
setProperty(tc, '"Model', 'sldemo absbrake', 'SimulationIndex',2);

% Add a parameter override to Simulation 1 and 2

psl = addParameterSet(tc, 'Name', 'Parameter Set 1','SimulationIndex',1);
pol = addParameterOverride(psl, 'Rr',1.20);
ps2 = addParameterSet(tc, 'Name', 'Parameter Set 2','SimulationIndex',2);
po2 = addParameterOverride(ps2, 'Rr',1.24);

% Capture equivalence criteria
eq = captureEquivalenceCriteria(tc);

% Set the equivalence criteria tolerance for one signal
sc = getSignalCriteria(eq);
sc(1).AbsTol = 2.2;

% Run the test case and return an object with results data
ResultsObj = run(tc);

% Open the Test Manager so you can view the simulation
% output and comparison data
sltest.testmanager.view;

In the Equivalence Criteria Result section of the Test Manager results, the yout . Ww signal passes
because of the tolerance value. The other signal comparisons do not pass, and the overall test case
fails.

Run a Test Case and Collect Coverage

This example shows how to use a simulation test case to collect coverage results. To collect coverage,
you need a Simulink Coverage license.

% Create the test file, test suite, and test case structure
tf = sltest.testmanager.TestFile('API Test File');

ts = createTestSuite(tf, 'API Test Suite');

tc = createTestCase(ts, 'simulation', 'Coverage Test Case');

Create and Run Test Cases with Scripts

% Remove the default test suite
tsDel = getTestSuiteByName(tf, 'New Test Suite 1');
remove(tsDel);

% Assign the system under test to the test case
setProperty(tc, 'Model', 'sldemo autotrans');

% Turn on coverage settings at test-file level

cov = getCoverageSettings(tf);
cov.RecordCoverage = true;

% Enable MCDC and signal range coverage metrics
cov.MetricSettings = 'mr';

% Run the test case and return an object with results data
rs = run(tf);

% Get the coverage results
cr = getCoverageResults(rs);

% Open the Test Manager to view results
sltest.testmanager.view;

In the Results and Artifacts pane of the Test Manager, click on Results. You can view the
aggregated coverage results.

Create and Run Test Case Iterations

This example shows how to create test iterations. You can create table iterations programmatically
that appear in the Iterations section of a test case. The example creates a simulation test case and
assigns a Signal Builder group for each iteration.

% Create test file, test suite, and test case structure

tf = sltest.testmanager.TestFile('Iterations Test File');
ts = getTestSuites(tf);
tc = createTestCase(ts, 'simulation', 'Simulation Iterations');

% Specify model as system under test
setProperty(tc, 'Model', 'sldemo autotrans');

% Set up table iteration

% Create iteration object

testItrl = sltestiteration;

% Set iteration settings

setTestParam(testItrl, 'SignalBuilderGroup', 'Passing Maneuver');
% Add the iteration to test case

addIteration(tc,testItrl);

Set up another table iteration

Create iteration object

testItr2 = sltestiteration;

% Set iteration settings

setTestParam(testItr2, 'SignalBuilderGroup', 'Coasting');
% Add the iteration to test case
addIteration(tc,testItr2);

)
©
)

©

6-83

6 Test Manager Test Cases

6-84

% Run test case that contains iterations
results = run(tc);

% Get iteration results

tcResults = getTestCaseResults(results);
iterResults = getIterationResults(tcResults);

See Also

More About

. “Import Test Cases for Equivalence Testing” on page 5-14

Test Iterations

Test Iterations

In this section...

“Create Table Iterations” on page 6-85
“Create Scripted Iterations” on page 6-87
“Capture Baseline Data from Iterations” on page 6-89

“Sweep Through a Set of Parameters” on page 6-91

You can run the same test case with different data or configuration sets by using test case iterations.
[terations can use different:

* Parameters.

* External inputs.

* Configuration sets.

* Signal Editor scenarios.

* Signal Builder groups.

* Baseline data.

Set up iterations in the Iterations section of a test case. You can use table iterations or scripted
iterations. If the test collects coverage using Simulink Coverage, the same coverage settings apply to
all iterations in the test case.

Whether you use table or scripted iterations, you can see the iterations in the test case by clicking the
Show Iterations button.

Create Table Iterations

Table Iterations provide a quick way to add iterations based items in your model or test case. To
create iterations with the table, first make the appropriate columns visible:

Expand the Iterations > Table Iterations section.

In the table, add or remove columns by clicking the ¥ button and selecting items in the list. For
example, to display parameter and configuration sets, select the Parameter Set and
Configuration Set items.

I T T LTI T AT ALy I

#| Parameter Set
«| Configuration Set
External Input
Logged Signal Set
Bazeline -

FiGie==ci:] = Add & Delete «

Add Iterations Manually

1 To manually add iterations, click Add. The table displays a new iteration row.

6-85

6 Test Manager Test Cases

2 Assign an iteration name and select items for the iteration. For example, this test case has four
iterations. Each iteration uses a different combination of external input and baseline data.

* TABLE ITERATIONS®

o | MAME EXTERMAL INPL ASEL
« |Passing BrakeThrottle_InputData xlsx BrakeThrottleBaselinel.mat
~ GradualAccel BrakeThrottle_InputData xlsx (1) BrakeThrotleBaseline2 mat
~ HardBrake BrakeThrottle_InputData xlsx (2) BrakeThrottleEaseline3.mat
+ Coast BrakeThrottle_InputData.xlsx (3) BrakeThrottleBaselined. mat

Generate Table Iterations
You can also automatically generate iterations from data in your test case and model:

1 (Click the Auto Generate button.
2 Select items to generate iterations.

If you select multiple items, iterations are created in sequential pairings. For example:

* The model sldemo autotrans has a Signal Builder block with four signal groups, labeled
S1, S2, S3, and S4.

* The test case has three parameter sets, labeled P1, P2, and P3.

* Automatically generating iterations from Signal Builder groups and parameter sets results in
three iterations. The iterations are limited by the three parameter sets. Each iteration
contains one Signal Builder group and one parameter set. The Signal Builder group and
parameter set are matched in the order that they are listed in the Signal Builder block and
parameter set section.

4 Signal Builder (sldemo_autotrans/ManeuversGUI) [ola]==
File Edit Group Signal Axes Help Ll

SH| 2R |o o | =T 0|BEFREE > n om | R

v PARAMETER OVERRIDES
» | Parameter Set 1

> Parameter Set 2 .

» Parameter Set 3

+ lteration1 Passing Maneuver Parameter Set 1

|lteration2 Gradual Acceleration Parameter Set 2

Hard braking Parameter Set 3

NN ey 4= Add C Refresh Delete

+ Iteration3

6-86

Test Iterations

3 Specify an optional naming rule for the iterations. In the Iteration naming rule box, enter the

rule using:

* The name of each setting you want to use in the name, with spaces removed

* An underscore or space to separate each setting

For example, if you want to include the name of the parameter set, configuration set, and
baseline file name, enter ParameterSet ConfigurationSet Baseline.

Section Option

Purpose

Signal Builder Group

Applies to the Inputs section of a simulation,
baseline, or equivalence test case, for the
specified Signal Builder Group. Each Signal
Builder group is used to generate an iteration.

Signal Editor scenario

Applies to the Inputs section of a simulation,
baseline, or equivalence test case, for the
specified Signal Editor Scenario. Each Signal
Editor scenario is used to generate an iteration.

Parameter Set

Applies to the Parameter Overrides section of a
simulation, baseline, or equivalence test case.
Each parameter override set is used to generate
an iteration.

External Input

Applies to the Inputs section of a simulation,
baseline, or equivalence test case, for the
specified External Inputs sets. Each external
input set is used to generate an iteration.

Configuration Set

Applies to the Configuration Setting Overrides
section of a simulation, baseline, or equivalence
test case. Each iteration uses the configuration
setting specified.

Baseline

Applies only to baseline test case types,
specifically to the Baseline Criteria section of a
baseline test case. Each baseline criteria set is
used to generate an iteration.

Simulation 1 or 2

Applies only to equivalence test case types. At the
top of the Auto Generate Reports dialog box,
there is a menu for Simulation 1 or Simulation
2. These sections correspond to the two
simulation sections within the equivalence test
case.

Create Scripted Iterations

You can run a custom set of iterations using a script in the Scripted Iterations section. For example,
you can define parameter sets or customize iteration order by using a custom iteration. Scripted
iterations are generated at run time when a test executes.

6-87

6 Test Manager Test Cases

* SCRIPTED ITERATIONS™

»

Help on creating test iterations:

2 %% Iterate over all External Inputs.

=

ok

[y
D W o0~

MJ

[#4]

@ N b

~|

52

¢ Determine the number of possible iterations

numSteps = length({sltest_externalInputs);

% Create each iteration

for

end

k =1 : numSteps
% Set up a new iteration object
testItr = sltestiteration();

% Set iteration settings
setTestParam(testItr, 'ExternalInput', sltest_externalInputs{k}};

% Register the iteration to run in this test case
addIteration(sltest_testCase, testItr); % You can pass in an optional iteration name

ICIEWLDMEIGHECEN Generate an iteration Script using templates

6-88

Iteration Script Components

An iteration script must contain certain components. The most basic iteration script contains three
elements:

1 Aniteration object, created using sltestiteration.

2 An iteration setting, set using setTestParam.
3 The iteration registration, added using addIteration.

For example, this script creates an iteration that runs one signal group from a Signal Builder block.
%% Iterate Using a Signal Builder Group

% Set up a new iteration object
testItr = sltestiteration;

% Set iteration setting using Signal Builder group
setTestParam(testItr, 'SignalBuilderGroup', ...
sltest signalBuilderGroups{1});

% Add the iteration to run in this test case
% The predefined sltest testCase variable is used here
addIteration(sltest testCase,testItr);

For more information about the test iteration class, see sltest.testmanager.TestIteration.
You can iterate over multiple items, such as Signal Builder groups. You can iterate over all Signal
Builder groups in the block by putting the basic iteration script in a loop:

%% Iterate Over All Signal Builder Groups

% Determine the number of possible iterations
numSteps = length(sltest signalBuilderGroups);

Test Iterations

% Create each iteration

for k = 1 : numSteps
% Set up a new iteration object
testItr = sltestiteration;

% Set iteration settings
setTestParam(testItr, 'SignalBuilderGroup',sltest signalBuilderGroups{k});

% Add the iteration to run in this test case
% You can pass in an optional iteration name

addIteration(sltest testCase,testItr);
end

Predefined Variables

You can use predefined variables to write iterations scripts. To see the list of predefined variables in
the Test Manager, expand the Help on creating test iterations section. You write the iterations
script in the script box within the Scripted Iterations section. The script box is a functional
workspace, which means the MATLAB base workspace cannot access information from the script box.
If you define variables in the script box, then other workspaces cannot use the variable.

The predefined variables are:

* sltest bdroot — Model simulated by the test case, defined as a string

* sltest sut — The System Under Test, defined as a string

+ sltest isharness — trueif sltest bdroot is a harness model, defined as a logical

+ sltest externallnputs — Name of external inputs, defined as a cell array of strings

*+ sltest parameterSets — Name of parameter override sets, defined as a cell array of strings
+ sltest configSets — Name of configuration settings, defined as a cell array of strings

* sltest tableIterations — Iteration objects created in the iterations table, defined as a cell
array of sltest.testmanager.TestIteration objects

+ sltest testCase — Current test case object, defined as an sltest.testmanager.TestCase
object
Scripted Iteration Templates

You can quickly generate iterations for your test case using templates for Signal Builder groups,
parameter sets, external inputs, configuration sets, and baseline sets, if you are using a baseline test
case. Scripted iteration templates follow lockstep ordering and pairing of test settings. For more
information about lockstep ordering, see “Create Table Iterations” on page 6-85.

For example, if you want to run all signal builder groups in a scripted iteration:

Click Iteration Templates.
2 Select the test case settings you want to iterate through. Click OK.

The script is generated and added to the script box below any existing scripts.

3 To generate a table that gives a preview of the iterations that execute when you run the test case,
click Show Iterations.

Capture Baseline Data from Iterations
This example shows how to create a baseline test by capturing data from a test case with table

iterations. You create the iterations from Signal Editor scenarios in the model. Before running the
example, navigate to a writable folder on the MATLAB® path.

6-89

6 Test Manager Test Cases

1. Open the model. At the command line, enter

Model = 'sltestCar';
open_system(Model);

Simulink® Test™ model sltestCar

brake

impeller forque

e T
MNe
| throttle
Engine
Passing_Maneuve
Brake . MNe B !!E -
gear P gear i i!iilﬁ
— S B EE_N_
| Throttle > i_‘i
wf‘ throttle | Mout i i Tout output torque "
Inputs shifi_logic transmiszion wefilcle
transmission speed

wehicle speed

Caopyright 1957-201% The MathWaorks, Inc.

2. Open the Test Manager and create a test file. At the command line, enter sltestmgr
3. In the Test Manager, click Test File from Model from the New dropdown.

4. Specify the test file.

1 Enter sltestCar as the Model.

2 Enter the test file name or full path in Location.
3 Select Baseline as the Test Type.
5. Select the test case. Expand the test file and select the sltestCar/Inputs test case.

[=))]

. Select the signals for the baseline data:

In the Simulation Outputs section, click Add.

In the model canvas, select the output torque signal and in the Connect dialog, check the box
for that signal. Select the vehicle speed signal and check its box in the dialog.

3 In the Test Manager message dialog box, click Done.
The signals appear in the Logged Signals table.

N

7. View iterations for the test case:

Expand the Iterations and Table Iterations sections. The iterations for the selected test case
automatically appear. The iterations correspond to the four Signal Editor scenarios.

8. Capture baseline data for the iterations:

6-90

Test Iterations

In the Baseline Criteria section, click the arrow next to Capture.
Select MAT as the File format.

Specify the location to save the baseline data files in the File field.
Select Capture Baselines for Iterations.

aua A W N =

Click Capture.

The model simulates for all Signal Editor scenarios. The baseline data for output torque and
vehicle speed are captured in four MAT files. Also, each baseline data set is added to its
corresponding iterations in the table.

v BASELINE CRITERIA

Include baseline data in test result

SIGNAL NAME ABS TOL REL TOL LEADING TOL LAGGING TOL ==
» Coasting mat 0 0.00% 0 0
b Gradual_Acceleration.mat 0 0.00% 0 0
» Hard braking.mat 0 0.00% 0 0
» Passing_Maneuver. mat 0 0.00% 0 0
o
+ Add... Capture. . Edit.. Refresh Visualize Delete
v ITERATIONS
» TABLE ITERATIONS
| NAME DESCRIPTION SIGNAL EDITOR SCENA... o | BASELINE +
v | Coasting None Coasting Coasting mat
¥ | Gradual_Acceleration None Gradual_Acceleration Gradual_Acceleration. mat
+|Hard_braking None Hard_braking Hard_braking.mat
+ Passing_Maneuver None Passing_Maneuver Passing_Maneuver mat

]

INGYe R o Add @ Delete -

Sweep Through a Set of Parameters

Scripted iterations can be used to test a model by sweeping through a set of parameters. You can use
this script to try different values for the model workspace parameter Iei in the model sltestCar.
Add the script under Iterations > Scripted Iterations.

6-91

6 Test Manager Test Cases

%% Iterate over Iei parameter

% Set up the parameter values to sweep over
IeiValues = [0.021,0.022,0.022,0.023];
numSteps = length(IeiValues);

% Create each iteration

for k = 1 : numSteps
% Set up a new iteration object
testItr = sltestiteration;

% Set value of lei (parameter in model workspace)
setVariable(testItr, 'Name', 'Iei', 'Source', 'model workspace',...
'Value',IeiValues(k));
% Add the iteration to run in this test case
addIteration(sltest testCase,testItr);
end

After you add the script, click Show Iterations. You can see the iterations that the script created.

Ilterations ? X

Total number of iterations: 4

NAME DETAILS
* WORKSPACE VARIABLE OVERRIDES -
Scripted_lterationt PARAMETER NAME VALUE SOURCE
lei 0.021 model workspace s
“
* WORKSPACE VARIABLE OVERRIDES
Scripted_Iteration2 PARAMETER NAME VALUE SOURCE
lei 0.022 model workspace s
“

* WORKSPACE VARIAELE OVERRIDES

Scripted_Iteration3 FARAMETER NAME VALUE SOURCE

lai nna rmindal wanarkenara

L1

1-40F 4 ITERATIONS

-

Expand All Collapse All

Running the test generates a result for each iteration.

6-92

Test lterations

Test Browser QERCEHTIEETLEEINE kS

|Fi|te' results by name or tags, e.g. tags: test T
~ Results: 2018-Aug-10 16:04:14 18
~ [£] New Test Case 3 1o
v [1] Scripted_lterationt (]

v [1] Scripted_lteration2 (]
b [1] Scripted_lteration3 (]
v [1] Scripted_lterationd (]

See Also
setModelParam | sltest.testmanager.TestIteration

Related Examples

. “Create and Run Test Cases with Scripts” on page 6-81

6-93

6 Test Manager Test Cases

Collect Coverage in Tests

6-94

In this section...

“Set Up Coverage Collection Using the Test Manager” on page 6-94
“View and Filter Coverage Results in the Test Manager” on page 6-96
“Coverage Filtering Using the Test Manager” on page 6-98

Coverage refers to determining the testing completeness of models and generated code by analyzing
how much of the model has been exercised. To collect coverage using the Simulink Test Test Manager
or sltest.testmanager.CoverageSettings, a Simulink Coverage license is required. Although
you can set up and run test cases using only Simulink Coverage, Simulink Test provides additional
test creation and test management features. For tests with coverage collection turned on, the Test
Manager includes the coverage of each metric you choose to collect in the results. If you have a
license for Simulink Requirements, you can also use the Test Manager to verify that coverage results
are traced to specific requirements.

Set Up Coverage Collection Using the Test Manager

In the Test Manager, you can enable coverage and select the coverage metrics at the test file level.
Test suites and test cases inherit the coverage settings from the test file. However, you can turn off
coverage collection for individual test suites and test cases.

To set up the Test Manager to include coverage collection:

Create a test file and set up a test case for your model.

2 Select the test file and expand the Coverage Settings section. Under Coverage to Collect,
select Record coverage for system under test to turn on coverage collection. You can also
collect coverage for referenced models.

Collect Coverage in Tests

v COVERAGE SETTINGS

+ COVERAGE TO COLLECT
+ | Record coverage for system under test
Record coverage for referenced models

~ COVERAGE FILTERS

NAME

There are no coverage filter files applied.

“
+ Add Remove

COVERAGE METRICS

+'| Decision v Condition
| MCDC Lookup Table
Signal Range Signal Size
Simulink Design Verifier Saturation on integer overflow

Relational Boundary

3 Optionally, to add or remove existing coverage filter files, click Add or Remove, respectively, in
the Coverage Filters section and select the filter file. More than one filter file can be applied at
the same time.

4 Select the coverage metrics to collect. For information on metrics, see “Types of Model
Coverage” (Simulink Coverage) and “Model Objects That Receive Coverage” (Simulink
Coverage).

5 Run the test. Coverage is collected for all test suites and test cases in the test file.

To remove individual test suites or test cases from collecting coverage data, select the suite or case
and change its coverage settings.

6-95

6 Test Manager Test Cases

View and Filter Coverage Results in the Test Manager
View Aggregated Coverage Results and Metrics

After you collect coverage, use the Results and Artifacts pane in the Test Manager to view the
results. Coverage results are reported in results sets. Select a Results item in the pane and expand
the Aggregated Coverage Results section. The coverage percentage is shown for each metric and
the colors summarize the coverage results.

» Dark blue — Satisfied coverage

* Red — Unsatisfied coverage

* Light blue — Justified coverage

Results and Artifacts Results: 2020-Jan-02 09:40:29
|:iller results by name or tags =Y » SUMMARY

N 2 : -lan- 9:40:

~ Results: 2020-Jan-02 09:40:29 1 © ame Besulfts 2020 Jar 02 U2:4£:29
Outcome 1@

» = coviest 1@

Start Time 01/02/2020 09:40-34
End Time 01/02/2020 09:40-41
Type Result Set

+ AGGREGATED COVERAGE RESULTS
Create a coverage report from coverage results to justify or exclude missing coverage. The filters and updated

coverage values will be displayed with this result.

ANALYZED MODEL REPORT COMPLEXI... DECISION CONDITION MCDC EXECUTION <
slvnvdemo_covfilt o 29 36%m— 509 m— 50 % m— 39% m—m

6-96

To aggregate results from different test files into a single Result Set, select the separate results in the
Results and Artifacts list. Then, from the context menu, select Merge Coverage Results. A
Results Set that contains the combined coverage results appears in the list.

Scoping Coverage for Requirements-Based Tests

For requirements-based design and testing, such as for compliance to DO-178B, enable Scope
coverage results to linked requirements to check that your model design is executing the
requirements and that the tests are verifying those requirements. Both Simulink Coverage and
Simulink Requirements licenses are required. This option is available only if the results set contains
more than one simulation, such as multiple test cases or iterations.

When the Scope coverage results to linked requirements check box is selected, coverage results
include only tests that are directly linked to requirements and are explicitly tested. The aggregated
results update automatically without having to resimulate the model. If you have tests that touch a
model component but are not directly linked to a requirement, your aggregated coverage results
percentages might decrease when you enable scoping. To obtain 100% coverage to your
requirements, you might need to update your tests, add requirements links, or justify or exclude some
items from coverage.

Trace Coverage Results to the Model

To navigate from the test coverage results in the Test Manager to the model, click the model name in
the Aggregated Coverage Results table.

Collect Coverage in Tests

ANALYZED MODEL REPORT COMPLEXI... DECISION

Iﬁﬂslvnvde[po covfilt! a 29 36% =
3

The model opens, and its Coverage Report opens in the Coverage Details pane of the model window.
In this sample model, the model elements are red because they have less than 100% coverage.

slvnvdemo_covfilt b hd f
Coverage Filkeing Exampls slvnvdemo_covfilt
This model contains several constructs that prevent complete model coverage. Filtering these constructs from | -
coverage recording allows you to focus on other aspects of missing coverage that can and should be tesied.
Normal config (feedthrough) Table Of Contents
1) : u v yNom) 1. Analysis Information
pressure n 2. TeStS
S : 3. Summary,
FEE I TR0 i al When you Use constant values 1o drive subsysten n LY.
| constructs with missing coverage | | |7 enable ports for changing model configurations 4. Details
the enable |\Jg\3 and SUL‘.S'_-'S[CI“ contents cause
) . missing coverage.
z mace Analysis Information
¥ < [ySwitch]
. -
iy Model Information
The rate signal can never be less than
or equal to the saturation lower limit of 0. Model \'ersion 1.25
ratio rate
Author The MathWorks, Inc.
Last saved Mon Dec 16 10:38:29 2019
num
tprav —
The deftaT signal ‘ IySwitch] ratiof—»{ 1)
time capture can neverbe 0. | 8 merge | olin out Harness information
Nom] 2
Harness model(s) slvnvdemo_covfilt Harnessl
Copyright 2010-2017 The MathWorks, Inc
= Harness model owner slvnvdemo covfilt

Point to a model element to see a summary of its metrics and block execution.

MNormal config (feedthrough)

A

Enable was never false.

Decision 50% Execution
(1/2) 100% (1/1)

Click a model element to scroll to its detailed coverage results information in the Coverage Details
pane.

6-97

6 Test Manager Test Cases

Zaf snvdemo_covfitt b Y| 7.SubSystem block "Switchable config"
lal
Normal config { |
0' Justify; or Exclude
e Parent: slvnvdemo_covfilt
I W Uncovered Links: -
Wit
|>° = Metric Co.verage (this Coverage (inc.
object) descendants)
n
AT Cyclomatic
¥ . . 2 5
" Complexity
% (1/2
m— N 500 o {J.H) 17% (1/6)
Decision decision .
decision outcomes
outcomes
o 20% (1/5)
- Execution NA objective
& outcomes
o Decisions analyzed
= lySwitch] enable logical value 50%
prierm] false 101/101
0/101
Copyright 2010-2017 The MathWorks true =)
. 5

Create a Coverage Report

To create a report of the coverage for a model, click the arrow in the Report column of the
Aggregated Coverage Results table.

ANALYZED MODEL REPORT COMPLEXI_. DECISION
slvnvdemo_covfilt Al 29 36%

Coverage Filtering Using the Test Manager

Coverage filter rules specify one or more model objects or lines of generated code to exclude from
coverage collection or for which you want to justify the coverage results. A set of coverage filter rules
is contained in a filter file, which can be applied to the model or code being tested. You can apply
more than one filter file to a test and also, reuse filter files for different models. When you apply a
new or updated filter, the aggregated coverage results update automatically. You do not have to
resimulate your model. For more information, see “Coverage Filtering” (Simulink Coverage).

From the Test Manager, you can:

* Add or remove an existing coverage filter file — Click Add or Remove at the bottom of the
Coverage Filters or Applied Coverage Filters table and select the coverage filter file to add or
remove, respectively. More than one coverage filter file can be applied to the coverage results.

» Edit or create a filter file, define a filter rule, and justify or exclude coverage — From a Coverage
Report or the Coverage Details pane of a model, open the Simulink Coverage Filter Editor by

clicking on a justify icon == or a Justify or Exclude link. When the Filter Editor is open, the
Test Manager is locked. When you close the Filter Editor, the Test Manager is enabled and the
results and applied filters list are updated with your changes. For information on using the Filter
Editor, see “Creating and Using Coverage Filters” (Simulink Coverage) and “Create, Edit, and
View Coverage Filter Rules” (Simulink Coverage).

6-98

Collect Coverage in Tests

* Append currently applied coverage filters to the test file — Click Update Test File.

For more information on coverage filters, rules, and files, see the Coverage Filtering topics in
“Evaluate Coverage Results” (Simulink Coverage).

For information on considerations when collecting coverage in a test harness, see Test Harness
Considerations in “Test Harness and Model Relationship” on page 2-2.

See Also
sltest.testmanager.CoverageSettings

More About

. “Evaluate Coverage Results” (Simulink Coverage)

. “Model Objects That Receive Coverage” (Simulink Coverage)

. “Perform Functional Testing and Analyze Test Coverage” on page 9-9

. “Test Coverage for Requirements-Based Testing” on page 6-100

. “Assess Coverage Results from Requirements-Based Tests” (Simulink Coverage)

. “Trace Coverage Results to Requirements by Using Simulink Test and Simulink Requirements”

(Simulink Coverage)
. “Requirements-based Testing” (Simulink Requirements)

6-99

6 Test Manager Test Cases

Test Coverage for Requirements-Based Testing

enable

This example shows how to collect test coverage for a model that implements requirements.
Coverage refers to determining the testing completeness by analyzing how much of the model logic is
exercised. For requirements-based testing, coverage results can be scoped to linked requirements.
With this scoping you can assess if each model element is covered by the intended test case.

The example shows how scoping coverage results to linked requirements can reveal both inadequate
requirement linking and testing gaps. It also shows how to increase the coverage.

The model in this example is cruiseControlRBTCovExample, which represents a cruise control
system. This model implements and is linked to requirements. A test file has already been created for

this example.
Open the Cruise Control Model

cruiseControlRBTCovExample

D

(2 y—>»(NOT

brake

¥

Active Control

Y

AND

Determine if the
control is active

OR
o 1

Active last step

-

y¥r

Target speed
| -\‘ 9 i %@—D arror thirot —h'

3 - throt
Pl Controller

L, Compute the
target speed
O] pe I

6-100

=

¥

previous target L target

View the Linked Requirements

The requirements for this cruise control system have been captured in the Simulink Requirements
Editor. To view the requirements, use slreq.open('cruiseControlRBTCovReqs.slregx"').

Test Coverage for Requirements-Based Testing

Open the Test Manager and Test File
Use sltestmgr to open the Test Manager.
Click Open and select cruiseControlRBTCovTests.mldatx. The tests have been written to verify

that the model behavior meets the specified requirements. They have also been set up to record
Decision and Condition coverage. Expand Coverage Settings to see the selected metrics.

EEACVE a Results and Artifacts =| cruiseControlRBTCov Tests

‘ Filter tests by name or tags, e.g. t ~ COVERAGE SETTINGS
~ =1 cruiseControlRBTGovTests
N Cruise Control Test Suite v COVERAGE TO COLLECT

=] Set Speed Test
=| Brake Test

+ Record coverage for system under test

[El Activate Test Record coverage for referenced models

=l [EEEment e » COVERAGE FILTERS

=] Decrement Test

| Ui e COVERAGE METRICS
4 <+ Decision + | Condition
BEORERET FatuE MCDC Lookup Table
Name [cruiseControll
Location C:WUsers\dsch... STEIRTITE SIZEIREE
Enabled v Simulink Design Verifier Saturation on integer overflow

Tags
Relational Boundary

Each test case verifies and is linked to a requirement. For example, the Throttle Test verifies the
THROTTLE requirement. This requirement specifies that the throttle is applied smoothly if the speed
differs from the target. The test verifies this behavior using a logical assessment, which checks that
the throttle rate of change is between -1 and 1 radians per second, as defined in the requirement
description.

Run the Test and View Coverage Results
Run the test.

Click on Results in the Results and Artifacts pane when the test finishes running. Note that the tests
pass and that 100% aggregated coverage is reported.

v+ AGGREGATED COVERAGE RESULTS

Create a coverage report from coverage results to justify or exclude missing coverage. The filters and updated coverage values will be displayed
with this result.

ANALYZED MODEL REPORT COMPLEXI... DECISION CONDITION EXECUTION +
I cruiseControlRBTCovExample a 38 100% — 100% — 100% —

Turn on Scoping the Test Results to Linked Requirements

In the Aggregated Coverage Results pane, click the Scope coverage results to linked
requirements check box. Scoping the results means that each test only contributes coverage for
the corresponding model elements that implement the requirement verified by that test. Scoping
checks that model elements are covered by the intended test cases. The coverage results, which

6-101

6 Test Manager Test Cases

update automatically, now show aggregated coverage for Decision and Execution at 92% and 76%,
respectively.

v AGGREGATED COVERAGE RESULTS

Create a coverage report from coverage results to justify or exclude missing coverage. The filters and updated coverage values will be displayed
with this result.

ANALYZED MODEL REPORT COMPLEX|... DECISION CONDITION EXECUTION +
| cruiseControlRBTCovExample N 8 92% — 100% — 76% —

-

_ _ == Add Tests for Missing Coverage @ Export
v| Scope coverage results to linked requirements

View the Coverage Results in the Model

Click on the model name in the Analyzed Model column to highlight the coverage results in the model
and display the Coverage Report details.

In the model, if the Requirements table is not shown below the model, open it by clicking the
Perspectives views in the lower right corner of the model canvas and then, clicking Requirements.

Open the Controller subsystem. Blocks that do not have 100% coverage appear in red. Two sets of
Constant and Sum blocks are not linked to requirements and were never executed.

L\

—F
O ra

4 F Comput
@ & target sg
L\

— F

previous target

6-102

Test Coverage for Requirements-Based Testing

Link Blocks to Requirements

In this case, the missing coverage indicates insufficient requirements linking. These Constant and
Sum blocks are necessary for implementing the INCREMENT and DECREMENT requirements and

should be linked to the appropriate requirements.

In the table in the Requirements pane, expand cruiseControlRbtCovReqs. Right-click on the
upper Constant block and select Requirements > Link to Selection in Requirements Browser.
Then, click on the INCREMENT requirement in the Requirements table. Repeat this for the upper

Sum block.

For the lower Constant and Sum blocks, repeat the linking steps, but link to the DECREMENT

requirement.

Increase Coverage from a Specific Test

Open the PI Controller and click on the Discrete-Time Integrator block. The Coverage Details show
that the true decision for the upper limit was executed by the Increment Test (T4), rather than the
Throttle Test (T6). Since the block is part of the implementation of the THROTTLE requirement, it
should have been tested by the Throttle Test, which verifies the THROTTLE requirement. The
Increment Test does not verify this requirement and does not contribute coverage for this block when
the Scope model coverage to linked requirements setting is enabled.

Kp

KTs
z-1

—

true

0/801

T4

Discrete-Time Ki
Integrator

To resolve the missing coverage for this block, the Throttle Test needs to be updated to exercise the

Discrete-Time Integrator block more.

In the Test Browser pane of the Test Manager, select Throttle Test. Under Inputs, select
td throttle updated.mat as the External Inputs file. This updated input throttle data file has
some additional seconds of test data, which increase the target speed more aggressively while

maintaining the actual speed.

Select cruiseControlRBTCovTests in the Test Browser pane and rerun the test. Click the Scope
coverage results to linked requirements check box. The coverage results show 100%
coverage, which indicates that the tests adequately execute the model.

Revised Test Reveals an Issue in the Design

The revised Throttle Test now fails verification. The failure occurs because the throttle increases too
aggressively and is outside the required boundaries specified in the test. This indicates an issue with
the model design. The PI Controller block implementation would need to be updated to apply the
throttle within the required limits, including when the target and actual speeds differ significantly.

Conclusion

In summary, scoping coverage results to linked requirements can help reveal gaps in testing. Scoping
accomplishes this by assessing that each model element is exercised by the test that verifies the

corresponding requirement.

6-103

6 Test Manager Test Cases

Increase Test Coverage for a Model

6-104

Increase test coverage by generating test inputs.

If your tests achieve incomplete model coverage, you can increase coverage by generating test inputs
using Simulink® Design Verifier™. This example shows how to increase test coverage beyond an
initial test case. You measure initial coverage of a test case. Then, you generate new test cases, add
them to the test suite, run the tests, and review aggregate coverage.

The model you are testing must be on the MATLAB path or be in the current working folder.

This example uses Simulink Design Verifier and Simulink® Coverage™.

Workflow

This example tests a component of an autopilot system using a test harness. Time series data from
the base workspace is mapped to root inports in the test harness. The test file is configured to collect

coverage.
The example workflow is:

Measure model coverage of the initial test case.
Generate additional tests to achieve greater coverage.
Add the new test cases to the test file.

Run all test cases and review aggregate coverage.

A W N R

Paths and Example Files

Set paths and filenames for the example.

filePath = fullfile(matlabroot, 'toolbox', 'simulinktest', 'simulinktestdemos');

rollModel = 'RollAutopilotRevised’;
testHarness = 'RollReference LoggedDataTest';
testFile = 'RollRefTest.mldatx';

Run the Initial Test and Review Coverage

1. Ensure the working folder is writable.

2. Open the test file.

sltest.testmanager.view;
sltest.testmanager.load(fullfile(filePath,testFile));

Increase Test Coverage for a Model

|=| RollReference Timeseries Input E Start Page
|Fi|te'tests by name or tags, e.g. tags: test) .
R RollReference Timeseries Input ¥| Enabled
- Basic Design Test Cases RollRefTest » Logged Data and Coverage » RollReference Timeseries Input
|E| Reguirement 1.3 Test Simulation Test
v Logged Data and Coverage Select releases for simulation: | Current -

|E| RollReference Timeseries Input Create Test Case from External File
r TAGS

» DESCRIPTION

» REQUIREMENTS

~ SYSTEM UNDER TEST*

Model: | RollAutopilotRevised mRAC
+ TEST HARNESS®
Hamess: | RollReference_LoggedDataTest| v C #A

» SIMULATION SETTINGS OVERRIDES

» PARAMETER OVERRIDES

3. Run the test. In the Test Browser, highlight the Logged Data and Coverage test suite. Click
Run.

4. After the test completes, in the test results, expand the Coverage Results section. The test
achieves partial coverage for the Roll Reference subsystem.

* Decision coverage: 80%

* Condition coverage: 70%

+ MCDC 25%

* AGGREGATED COVERAGE RESULTS

m
m
0
[w]

[*a| RollautopilotRevised/Roll Reference A 5 80% e— 7% —— 050 - 100% e——

Generate Tests to Increase Model Coverage

Generate additional tests for missing coverage.

1. Below the coverage result, click Add Tests for Missing Coverage.

2. In the Add Tests for Missing Coverage dialog box, set these options:

* Harness: RollReference LoggedDataTest. This maps the new test inputs to the existing test
harness.

+ Test Case: Create a new test case. This creates a new test case with the generated test
inputs.

6-105

6 Test Manager Test Cases

+ Test Type:: Baseline Test. This gives the option to capture baseline data output from the
model for the generated tests.

* Test File:: Rol1RefTest. This re-uses the existing test file.

3. Click OK. A dialog box shows progress of the test case generation. When test case generation is
complete, a new test case appears in the Test Manager.

RGN Fesults and Artifacts

~ =] RollRefTest*
2 Basic Design Test Cases
- Logged Data and Coverage
=] RollReference Timeseries nput
= Mew Test Suite 1

=] Mew TestCase 1

Run the New Test Case
1. Cut and paste the new test case into the Logged Data and Coverage test suite.
2. Run the Logged Data and Coverage test suite again.

3. When simulation completes, in the Results and Artifacts section, select the result set and expand
the Aggregated Coverage Results. The test suite achieves complete coverage:

* Decision: 100%

* Condition: 100%

+ MCDC: 100%

~AGGREGATED COVERAGE RESULTS
RollAutopilotRevised/Roll Reference A 5 100% — 100% — 100% — 100% —
Cleanup

Clear variables and test results, and close the model.

clear filePath reqDoc rollModel testFile testHarness topModel;
sltest.testmanager.clearResults;

sltest.testmanager.close;

close system('RollAutopilotRevised',0);

6-106

Run Tests Using Parallel Execution

Run Tests Using Parallel Execution

In this section...

“When Do Tests Benefit from Using Parallel Execution?” on page 6-107

“Use Parallel Execution” on page 6-107

If you have a license to Parallel Computing Toolbox, then you can execute tests in parallel using a
parallel pool (parpool). Running tests in parallel can speed up execution and decrease the amount of
time it takes to get test results.

When Do Tests Benefit from Using Parallel Execution?

In general, parallel execution can help reduce test execution time if you have

* A complex Simulink model that takes a long time to simulate.
* Numerous long-running tests, such as iterations.

Use Parallel Execution

To run a test file using parallel execution:

1 The Test Manager uses the default Parallel Computing Toolbox cluster. For information about
where to specify or change the cluster, see “Discover Clusters and Use Cluster Profiles” (Parallel
Computing Toolbox). Test Manager runs in parallel only on the local machine.

2 On the Test Manager toolstrip, click the Parallel button.

Run Stop Parallel
RUN l/\@
Run a test file. The test file executes using parallel pool.
To turn off parallel execution, click the Parallel button to toggle it off.

Starting a parallel pool can take time, which would slow down test execution. To reduce time:

* Make sure that the parallel pool is already running before you run a test. By default, the parallel
pool shuts down after being idle for a specified number of minutes. To change the setting, see
“Specify Your Parallel Preferences” (Parallel Computing Toolbox).

* Load Simulink on all the parallel pool workers.

See Also
sltest.testmanager.run

Related Examples
. “Clusters and Clouds” (Parallel Computing Toolbox)

6-107

6 Test Manager Test Cases

Set Signal Tolerances

6-108

In this section...

“Modify Criteria Tolerances” on page 6-108
“Change Leading Tolerance in a Baseline Comparison Test” on page 6-108

You can specify tolerances in the Baseline Criteria or Equivalence Criteria sections of baseline
and equivalence test cases. You can specify relative, absolute, leading, and lagging tolerances for a
signal comparison.

To learn about how tolerances are calculated, see “How the Simulation Data Inspector Compares
Data” (Simulink).

Modify Criteria Tolerances

To modify a tolerance, select the signal name in the criteria table, double-click the tolerance value,
and enter a new value.

- | My_mat_base.mat

v Ww 0 0.00% 0 0
V| Vs 0 I} 0.00% 0 0
¥ 5d 0 0.00% 0 0
¥ slp 0 0.00% 0 0

If you modify a tolerance after you run a test case, rerun the test case to apply the new tolerance
value to the pass/fail results.

Change Leading Tolerance in a Baseline Comparison Test

Specify a tolerance when the difference between results falls in a range you consider acceptable.
Suppose that your model under test uses a particular solver. Solvers are sometimes updated from one
release to the next, and new solvers also become available. If you use an updated solver or change
solvers, you can specify an acceptable tolerance for differences between your baseline and later tests.

Generate the Baseline

Generate the baseline for the sf car model, which uses the ode-5 solver.

1 Open the model sf car.

2 Open the Test Manager and create a test file named Solver Compare. In the test case, set the
system under test to sf_car.

3 Select the signal to log. Under Simulation Outputs, click Add. In the model, select the
shift logic output signal. In the Signal Selection dialog box, select the check box next to
shift logic and click Add.

4 Save the baseline. Under Baseline Criteria, click Capture. Set the file format to MAT. Name the
baseline solver baseline and click Capture.

After you capture the baseline MAT-file, the model runs and the baseline criteria appear in the
table. Each default tolerance is 0.

Set Signal Tolerances

* « solver_baseline. mat 0 0.00% o

| shift_logic:1 0 0.00% 0

Change Solvers and Run the Test Case

Suppose that you want to use a different solver with your model. You run a test to compare results

using the new solver with the baseline.

1 In the model, change the solver to odel.

2 In the Test Manager, with the Solver Compare test file selected, click Run.

In the Results and Artifacts pane, notice that the test failed.

3 Expand the results of the failed test. Under Baseline Criteria Result, select the shift logic

signal.

The Comparison tab shows where the difference occurred.

[=] Solver Compare x [¢9 Comparison x

M shift_logic:1 (Baseline) M shifi_logic:1 (Compare To) M Tolerance

fourth

third

second

Mone

4] 10 20 30 40 50 80 7o 20 a0

M Difference M Tolerance

100

110

08

08

0.4

02

0

0 10 20 20 40 50 80 T0 20 a0

100

110

120

4 Zoom the comparison chart where the results diverged. The comparison signal changes ahead of

the baseline, that is, it leads the baseline signal.

6-109

6 Test Manager Test Cases

6-110

T=1 Solver Compare [Comparison

M shift_logic:1 (Baseline) m shift_logic:1 (Compare To) = Tolerance

second

5.8 58 6.0 6.2 6.4 6.8 6.5 7.0 T2 T4 7.8 EE: 3.0

Preview and Set a Leading Tolerance Value

Suppose that your team determines that a tolerance the size of the simulation step size (.04 in this
case) is acceptable. In the Test Manager, set a leading tolerance value. Use a leading tolerance for
the signal whose change occurs ahead of your baseline. Use a lagging tolerance for a signal whose
change occurs after your baseline.

You can preview how the tolerance value affects the test to see if the test passes with the specified
tolerance. Then set the tolerance on the baseline criteria and rerun the test.

1 Preview whether the tolerance you want to use causes the test to pass. With the result signal
selected, in the property box, set Leading Tolerance to .04.

Mame || shift_logic:1
Status L]

Absolute Tolerance 0

Relative Tolerance 0.00%

Leading Tolerance 0.04)

Lagging Tolerance 0

Block Path sf_car/shifi_logic

When you change this value, the status changes to show that the failed tests pass.

2 When you are satisfied with the tolerance value, enter it in the baseline criteria so you can rerun
the test and save the new pass-fail result. In the Test Browser pane, select the test case in the
Solver Compare test.

3 Under Baseline Criteria, change the Leading Tol value for the solver baseline.mat file
to .04.

By default, each signal inherits this value from the baseline file. You can override the value for
each signal.

Set Signal Tolerances

* | solver_baseline.mat

¥ shift_logic:1 0 0.00% 0.04 0

4 Run the test again. The test passes.
5 To store the tolerance value and the passed test with the test file, save the test file.

See Also
sltest.testmanager.BaselineCriteria | sltest.testmanager.SignalCriteria

Related Examples
. “Compare Model Output To Baseline Data” on page 6-7

6-111

6 Test Manager Test Cases

Test Sections

6-112

In this section...

“Select Releases for Testing” on page 6-112

“Set Preferences to Display Test Sections” on page 6-113
“Select releases for simulation” on page 6-113
“Tags” on page 6-113

“Description” on page 6-113

“Requirements” on page 6-113

“System Under Test” on page 6-113

“Parameter Overrides” on page 6-114

“Callbacks” on page 6-115

“Inputs” on page 6-116

“Simulation Outputs” on page 6-117

“Configuration Setting Overrides” on page 6-117
“Simulation 1 and Simulation 2” on page 6-117
“Equivalence Criteria” on page 6-117

“Baseline Criteria” on page 6-118

“Iterations” on page 6-119

“Logical and Temporal Assessments” on page 6-119
“Custom Criteria” on page 6-119

“Coverage Settings” on page 6-120

“Test File Options” on page 6-120

To view or edit the test sections, select a test file, suite, or case in the Test Browser pane.

Select Releases for Testing

You can select MATLAB releases installed on your system to create and run tests in. Use this
preference to specify the MATLAB installations that you want to make available for testing with Test
Manager. You can use releases from R2011b forward. The releases you add become available to select
from the Select releases for simulation list when you design the test.

You can add releases to the list and delete them. You cannot delete the release you started MATLAB
in.

To add a release, click Add, navigate to the location of the MATLAB installation you want to add, and
click OK.

For more information, see “Run Tests in Multiple Releases” on page 6-72.

Test Sections

Set Preferences to Display Test Sections

To simplify the Test Manager layout, you can select the sections of the test case, test suite, or test file
that appear in the Test Manager. Test case sections that were modified appear in the Test Manager,
regardless of the preference setting.

1 In the toolstrip, click Preferences.

2 Select the Test File, Test Suite, or Test Case tab.

3 Select sections to show, or clear sections to hide. To show only sections where settings are set,
clear all selections in the Preferences dialog box.

4 Click OK.

Also see sltest.testmanager.getpref and sltest.testmanager.setpref.

Select releases for simulation

Select the releases that you want available for running test cases. Build the list of releases using the
Release pane in the Test Manager Preferences dialog box. For more information, see “Run Tests in
Multiple Releases” on page 6-72.

Tags

Tag your tests with useful categorizations, such as safety, logged-data, or burn-in. Filter tests
using these tags when executing tests or viewing results. See “Filter and Reorder Test Execution and
Results” on page 6-145.

Description

In this section, add descriptive text to your test case, test suite, or test file.

Requirements

If you have a Simulink Requirements license, you can establish traceability by linking your test cases
to requirements. For more information, see “Link to Test Cases from Requirements” (Simulink
Requirements).

To link a test case, test suite, or test file to a requirement:

1 Open the Requirements Editor. In the Simulink Toolstrip, on the Apps tab, under Model
Verification, Validation, and Test, click Requirements Manager.

Highlight a requirement.

In the Test Manager, in the Requirements section, click the arrow next to the Add button and
select Link to Selected Requirement.

4 The requirement link appears in the Requirements list.

System Under Test

Specify the model you want to test in the System Under Test section. To use an open model in the

currently active Simulink window, click the Use current model button ..i

6-113

6 Test Manager Test Cases

Note The model must be available on the path to run the test case. You can add the model's
containing folder to the path using the preload callback. See “Callbacks” on page 6-115.

Specifying a new model in the System Under Test section can cause the model information to be out
of date. To update the model test harnesses, Signal Builder groups, and available configuration sets,

click the Refresh button ¢ .
Test Harness
If you have a test harness in your system under test, then you can select the test harness to use for

the test case. If you have added or removed test harnesses in the model, click the Refresh button &
to view the updated test harness list.

For more information about using test harnesses, see “Refine, Test, and Debug a Subsystem” on page
2-19.

Simulation Settings

You can override the System Under Test simulation settings such as the simulation mode, start time,
stop time, and initial state.

Considerations

* The System Under Test cannot be in fast restart or external mode.

» To stop a test running in Rapid Accelerator mode, press Ctrl+C at the MATLAB command
prompt.

* When running parallel execution in rapid accelerator mode, streamed signals do not show up in
the Test Manager.

* The System Under Test cannot be a protected model.

Parameter Overrides

In this section, you can specify parameter values in the test case to override the parameter values in
the model workspace, data dictionary, or base workspace. Parameters are grouped into sets. You can
turn parameter sets and individual parameter overrides on or off by using the check box next to the
set or parameter.

To add a parameter override:
1 Click Add.
A dialog box opens with a list of parameters. If the list of parameters is not current, click the

Refresh button & in the dialog box.

Select the parameter you want to override.

To add the parameter to the parameter set, click OK.

Enter the override value in the parameter Override Value column.

To restore the default value of a parameter, clear the value in the Override Value column and press
Enter.

6-114

Test Sections

You can also add a set of parameter overrides from a MAT-file, including MAT-files generated by
Simulink Design Verifier. Click the Add arrow and select Add File to create a parameter set from a
MAT-file.

For an example that uses parameter overrides, see “Override Model Parameters in a Test Case”.
Considerations

The Test Manager displays only top-level system parameters from the system under test.

Callbacks
Test-File Level Callbacks

Two callback scripts are available in each test suite that execute at different times during a test:

» Setup runs before test file executes.
* Cleanup runs after test file executes.

Test-Suite Level Callbacks
Two callback scripts are available in each test suite that execute at different times during a test:

* Setup runs before the test suite executes.
* Cleanup runs after the test suite executes.

Test-Case Level Callbacks
Three callback scripts are available in each test case that execute at different times during a test:

* Pre-load runs before the model loads and before the model callbacks.
* DPost-load runs after the model loads and the PostLoadFcn model callback.
* Cleanup runs after simulations and model callbacks.

If you are running multiple test cases, the order in which the callbacks execute is:

Preload test case 1
Load model 1
Preload test case 2
Load model 2
Post-load test case 1
Simulate model 1
Clean up test case 1
Post-load test case 2

© 0 N OO U A W N K=

Simulate model 2
10 Clean up test case 2

To run a single callback script, click the Run button > above the corresponding script.

You can use predefined variables in the test case callbacks:

6-115

6 Test Manager Test Cases

6-116

* sltest bdroot available in Post-Load: The model simulated by the test case. The model can be
a harness model.

* sltest sut available in Post-Load: The system under test. For a harness, it is the component
under test.

* sltest isharness available in Post-Load: Returns true if sltest bdroot is a harness model.

* sltest simout available in Cleanup: Simulation output produced by simulation.

* sltest iterationName available in Pre-Load, Post-Load, and Cleanup: Name of the
currently executing test iteration.

The test case callback scripts are not stored with the model and do not override Simulink model
callbacks. Consider the following when using callbacks:

» To stop execution of an infinite loop from a callback script, press Ctrl+C at the MATLAB command
prompt.

* sltest.testmanager functions are not supported.

Inputs

A test case can use input data from:

* A Signal Editor or Signal Builder block in the system under test. Select Signal Editor scenario
or Signal Builder group, and select the scenario or signal group. The system under test can
have only one Signal Builder or Signal Editor block at the top level.

* An external data file. In the External Inputs table, click Add. Select a MAT-file or Microsoft Excel
file.

For more information on using external files as inputs, see “Run Tests Using External Data” on

page 6-50. For information about the file format for Microsoft Excel files in Test Manager, see
“Format Test Case Data in Excel” on page 6-60.

* Aninput file template that you create and populate with data. See “Test Case Input Data Files” on
page 6-57.

To include the input data in your test results set, select Include input data in test result.

If the time interval of your input data is shorter than the model simulation time, you can limit the
simulation to the time specified by your input data by selecting Stop simulation at last time point.

For more information on test inputs, see the Test Authoring: Inputs page.
Edit Input Data Files in Test Manager
From the Test Manager, you can edit your input data files.

To edit a file, select the file and click Edit. You can then edit the data in the signal editor for MAT-files
or Microsoft Excel for Excel files.

To learn about the syntax for Excel files, see “Format Test Case Data in Excel” on page 6-60.

Test Sections

Simulation Outputs

Use the Simulation Outputs section to add signal outputs to your test results. Signals logged in
your model or test harness can appear in the results after you add them as simulation outputs. You
can then plot them. Add individual signals to log and plot or add a signal set.

Under Simulation Outputs, click Add. Follow the user interface.

Use the options in the Other Outputs subsection to add states, final states, model output values,
data store variables, and signal logging values to your test results. To enable selecting one or more of
these options, click Override model settings.

» States — Include state values between blocks during simulation. You must have a Sequence
Viewer block in your model to include state values.

* Final states — Include final state values. You must have a Sequence Viewer block in your model
to include final state values.

* Output — Include model output values

* Data stores — Include logged data store variables in Data Store Memory blocks in the model.
This option is selected by default.

* Signal logging — Include logged signals specified in the model. This option is selected by
default.

For more information, see “Capture Simulation Data in a Test Case” on page 6-68.

Configuration Setting Overrides

In the test case, you can specify configuration settings that differ from the settings in the model.
Setting the configuration settings in the test case enables you to try different configurations without
modifying your model.

Simulation 1 and Simulation 2

These sections appear in equivalence test cases. Use them to specify the details about the simulations
that you want to compare. Enter the system under test, the test harness if applicable, and simulation
setting overrides under Simulation 1. You can then click Copy settings from Simulation 1 under
Simulation 2 to use a starting point for your second set of simulation settings.

For the test to pass, Simulation 1 and Simulation 2 must log the same signals.

Use these sections with the Equivalence Criteria section to define the premise of your test case. For
an example of an equivalence test, see “Test Two Simulations for Equivalence”.

Equivalence Criteria

This section appears in equivalence test cases. The equivalence criteria is a set of signal data to
compare in Simulation 1 and Simulation 2. Specify tolerances to regulate pass-fail criteria of the test.
You can specify absolute, relative, leading, and lagging tolerances for the signals.

To specify tolerances, first click Capture to run the system under test in Simulation 1 and add signals
marked for logging to the table. Specify the tolerances in the table.

6-117

6 Test Manager Test Cases

6-118

After you capture the signals, you can select signals from the table to narrow your results. If you do
not select signals under Equivalence Criteria, running the test case compares all the logged signals
in Simulation 1 and Simulation 2.

For an example of an equivalence test case, see “Test Two Simulations for Equivalence”.

Baseline Criteria

The Baseline Criteria section appears in baseline test cases. When a baseline test case executes,
Test Manager captures signal data from signals in the model marked for logging and compares them
to the baseline data.

Capture Baseline Criteria

To capture logged signal data from the system under test to use as the baseline criteria, click
Capture. Then follow the prompts in the Capture Baseline dialog box. Capturing the data compiles
and simulates the system under test and stores the output from the logged signals to the baseline.
For a baseline test example, see “Compare Model Output To Baseline Data” on page 6-7.

You can save the signal data to a MAT-file or a Microsoft Excel file. To understand the format of the
Excel file, see “Format Test Case Data in Excel” on page 6-60.

You can capture the baseline criteria using the current release for simulation or another release
installed on your system. Add the releases you want to use in the Test Manager preferences. Then,
select the releases you want available in your test case using the Select releases for simulation
option in the test case. When you run the test, you can compare the baseline against the release you
created the baseline in or against another release. For more information, see “Run Tests in Multiple
Releases” on page 6-72.

When you select Excel as the output format, you can specify the sheet name to save the data to. If you
use the same Excel file for input and output data, by default both sets of data appear in the same
sheet.

If you are capturing the data to a file that already contains outputs, specify the sheet name to
overwrite the output data only in that sheet of the file.

To save a baseline for each test case iteration in a separate sheet in the same file, select Capture a
baseline for each iterations. This check box appears only if your test case already contains
iterations. For more information iterations, see “Test Iterations” on page 6-85.

Specify Tolerances

You can specify tolerances to determine the pass-fail criteria of the test case. You can specify
absolute, relative, leading, and lagging tolerances for individual signals or the entire baseline criteria
set.

After you capture the baseline, the baseline file and its signals appear in the table. In the table, you
can set the tolerances for the signals. To see tolerances used in an example for baseline testing, see
“Compare Model Output To Baseline Data” on page 6-7.

Test Sections

Add File as Baseline

By clicking Add, you can select an existing file as a baseline. You can add MAT-files and Microsoft
Excel files as the baseline. Format Microsoft Excel files as described in “Format Test Case Data in
Excel” on page 6-60.

Update Signal Data in Baseline

You can edit the signal data in your baseline, for example, if your model changed and you expect
different values. To open the signal editor or the Microsoft Excel file for editing, select the baseline
file from the list and click Edit. See “Manually Update Signal Data in a Baseline” on page 6-78.

You can also update your baseline when you examine test failures in the data inspector view. See
“Examine Test Failures and Modify Baselines” on page 6-76.

Iterations

Use iterations to repeat a test with different parameter values, configuration sets, or input data.

* You can run multiple simulations with the same inputs, outputs, and criteria by sweeping through
different parameter values in a test case.

* Models and external data files can contain multiple test input scenarios, such as signal groups. To
simplify your test file architecture, you can run different input scenarios as iterations rather than
as different test cases. You can apply different baseline data to each iteration, or capture new
baseline data from an iteration set.

* You can iterate over different configuration sets, for example to compare results between solvers
or data types.

To create iterations from defined parameter sets, signal groups, external data files, or configuration
sets, use table iterations. To create a custom set of iterations from the available test case elements,
write a MATLAB iteration script in the test case. For more information about test iterations, see “Test
Iterations” on page 6-85

Logical and Temporal Assessments

Create temporal assessments using the form-based editor that prompts you for conditions, events,
signal values, delays, and responses. When you collapse the individual elements, the editor displays a
readable statement summarizing the assessment. See “Assess Temporal Logic by Using Temporal
Assessments” on page 3-66.

Custom Criteria

This section includes an embedded MATLAB editor to define custom pass/fail criteria for your test.
Select function customCriteria(test) to enable the criteria script in the editor. Custom criteria
operate outside of model run time; the script evaluates after model simulation.

Common uses of custom criteria include verifying signal characteristics or verifying test conditions.
MATLAB Unit Test qualifications provide a framework for verification criteria. For example, this
custom criteria script gets the last value of the signal PhiRef and verifies that it equals 0:

% Get the last value of PhiRef from the dataset Signals Reql 3
lastValue = test.sltest simout.get('Signals Reql 3').get('PhiRef').Values.Data(end);

6-119

6 Test Manager Test Cases

6-120

% Verify that the last value equals 0
test.verifyEqual(lastValue,0);

See “Process Test Results with Custom Scripts” on page 6-125. For a list of MATLAB Unit Test
qualifications, see “Table of Verifications, Assertions, and Other Qualifications” (MATLAB).

You can also define plots in the Custom Criteria section. See “Create, Store, and Open MATLAB
Figures” on page 6-134.
Coverage Settings

Use this test section to configure coverage collection for a test file. (The settings propagate down to
its test suites and test cases.) Coverage filter files specified here override filter files specified in the
model configuration settings. For more information, see “Collect Coverage in Tests” on page 6-94. For
information on the coverage metrics option , see the parameter info for CovMetricSettings in
“Internal Programmatic Model Settings” (Simulink).

Test File Options
Close open Figures at the end of execution

When your tests generate figures, select this option to clear the working environment of figures after
the test execution completes.

Store MATLAB figures

Select this option to store figures generated during the test with the test file. You can enter MATLAB
code that creates figures and plots as a callback or in the test case Custom Criteria section. See
“Create, Store, and Open MATLAB Figures” on page 6-134.

Generate report after execution

Select Generate report after execution to create a report after the test executes. Selecting this
option displays report options that you can set. The settings are saved with the test file.

Note To enable the options to specify the number of plots per page, select Plots for simulation
output and baseline.

For detailed reporting information, see “Export Test Results and Generate Test Results Reports” on
page 7-7 and “Customize Test Results Reports” on page 7-11.

See Also
sltest.testmanager.getpref | sltest.testmanager.setpref

Increase Coverage by Generating Test Inputs

Increase Coverage by Generating Test Inputs

In this section...

“Overall Workflow” on page 6-121

“Test Case Generation Example” on page 6-122

Using Simulink Design Verifier, you can generate test inputs that replicate design errors, achieve test
objectives, or meet coverage criteria. Simulink Test can create test cases that use test inputs and
expected outputs from Simulink Design Verifier.

Overall Workflow

Test case generation follows this workflow.

1

Choose an existing Simulink Design Verifier results file, or generate new results by analyzing
your model.

» Ifyou use an existing results file, you can load results by either:

* Using the Simulink Test command sltest.import.sldvData.

* Using Simulink Design Verifier menu items. In the model, on the Apps tab, under Model
Verification, Validation, and Test, click Design Verifier. On the Tests tab, click Simulink
Test Manager. In the Review Results section, click Load Earlier Results. Select the
MAT file with the analysis results.

* Ifyou run a model analysis, the Simulink Design Verifier Results Summary window appears
after the analysis completes.

In the results summary window, click Export test cases to Simulink Test.
Enter the name of an existing or new test harness.
Select a test harness source for the generated test inputs. You can select

* Inport: The inputs are contained in the Simulink Design Verifier data file and mapped to
Inport blocks in the test harness. The mapping is shown in the Inputs section of the test case.
Using the Inport option allows you to map other inputs to the test harness Inport blocks,
which can be useful for running multiple test cases or iterations using the same test harness.

* Signal Editor: The inputs are in scenarios in a Signal Editor block inside the test harness.
The Signal Editor block supports MAT-files that contain these inputs. You can edit these
scenarios in the Signal Editor.

* Signal Builder: The inputs are contained in groups in a Signal Builder block inside the
test harness. Using the Signal Builder option allows you to view the test inputs in the
Signal Builder block editor.

Select a new or existing test file, and enter names for the test file and test case.

Click OK to export the test cases to Simulink Test. The test files and test cases are updated in the
Test Manager. Simulink Design Verifier saves a MAT data file that also includes parameter
settings. You can view or override these settings in the Parameter Overrides section of the Test
Manager.

Note Another way to import test cases from Simulink Design Verifier is with the Create Test for
Component wizard. For information, see “Generate Tests for a Component” on page 6-21.

6-121

6 Test Manager Test Cases

Test Case Generation Example

This example shows how to generate test cases for a controller subsystem using Simulink Design
Verifier, and export the test cases to a test file in Simulink Test. The example requires a Simulink
Design Verifier license.

The model is a closed-loop heat pump system. The controller accepts the measured room temperature
and set temperature inputs. The controller outputs a bus of three signals controlling the fan, heat
pump, and the direction of the heat pump (heat or cool). The model contains a harness that tests
heating and cooling scenarios.

1 Open the model.

open_system(fullfile(docroot, 'toolbox', 'sltest', 'examples’,...
'sltestTestCaseFromDVExample.slx'));

If you do not specify the full file path, as shown in this step, the model must be on the MATLAB
path or in the current working folder.

2 Set the current working folder to a writable folder.

3 In the model, generate tests for the Controller subsystem. Right-click the Controller block
and select Design Verifier > Generate Tests for Subsystem.

Simulink Design Verifier generates tests for the component.
In the results summary window, click Export test cases to Simulink Test.
5 In the Export Design Verifier Test Cases dialog box, enter:

* Test Harness: TestHarnessl
* Harness Source: Signal Editor
* Select Use a new test file
* Test File: . /TestFile GeneratedTests.mldatx
o Test Case: <Create a new test case>
6 Click OK.

A new test file is created in the working folder, and a test harness is added to the main model,
owned by the Controller subsystem. Click the harness badge to preview the new test harness.

Teet A contral_in

In1

control_put e T

Trooam_in @—h Toutside
In2
Confroller Plant
. TestHamess1 '
Requiremeant2

Internal Test Harnesses |Open test harness

6-122

Increase Coverage by Generating Test Inputs

7 Click the TestHarness1 thumbnail to open the harness. Then double-click the Harness Inputs

Signal Editor block source.

In the Block Parameters: Harness Inputs dialog box, click Launch Signal Editor
9 To see the test inputs in the Signal Editor, expand a test case and select the inputs.

ddddn ©

» (€]
» (€]
» (€]
» (€]
» (€]
» (€]

SCENARIOS
AND SIGNALS

TestCase 1

Tset
Troom_in
DeltaT_fan
DeltaT_pump
delay
TestCase_2

TestCase_3
TestCase_4
TestCase_5
TestCase_6

TestCase_T7

10 In the Test Manager, the new test case displays the system under test, and the test harness

PLOTIEDIT

ML EANTANIAS

TestCase_1.Tset

4 5 6

TestCase_1.Troom_in

1 5 5
TestCase_1.DeltaT_fan

1 5 6

TestCase_1 DeltaT_pump

containing the generated inputs in the Signal Editor source. Expand the Iterations section to
see the iterations corresponding to the signal scenarios.

6-123

6 Test Manager Test Cases

Tesl Bro Results and Artifacts || New TestCase1 [} Start Page

Filter tests by name or tags, e g. tags: test

v ITERATIONS!
~ &1 B2Btest*
~ [New Test Suite 1 v TABLE ITERATIONS!

= rtwdemo_sil_block_Harness1

« B TestFile GeneratedTests | NAME DESCRIPTION SIGNAL EDITOR SCENARIO OR SIGNAL BUILDER GROUP +
+ [New Test Suite 1 TestCase 1 None TestCase_1
|] New Test Gase 1 + TestCase_2 None TestCase 2
 TestCase 3 None TestCase_3
+ TestCase_4 None TestCase_4
 TestCase 5 None TestCase_5

+|TestCase A None TestCase 6 M

1 -

Auto Generate [l F-CIEE-]

See Also
sltest.import.sldvData

More About

. “Generate Tests for a Component” on page 6-21

6-124

Process Test Results with Custom Scripts

Process Test Results with Custom Scripts

In this section...
“MATLAB Testing Framework” on page 6-125
“Define a Custom Criteria Script” on page 6-125

“Reuse Custom Criteria and Debug Using Breakpoints” on page 6-126
“Assess the Damping Ratio of a Flutter Suppression System” on page 6-128

“Custom Criteria Programmatic Interface Example” on page 6-131

Testing your model often requires assessing conditions that ensure a test is valid, in addition to
verifying model behavior. MATLAB Unit Test provides a framework for such assessments. In Simulink
Test, you can use the test case custom criteria to author specific assessments, and include MATLAB
Unit Test qualifications in your script.

Custom criteria apply as post-simulation criteria to the simulation output. If you require run-time
verifications, use a verify () statement in a Test Assessment or Test Sequence block. See “Assess
Model Simulation Using verify Statements” on page 3-15.

MATLAB Testing Framework

A custom criteria script is a method of test, which is a matlab.unittest test case object. To
enable the function, in the test case Custom Criteria section of the Test Manager, select function
customCriteria(test). Inside the function, enter the custom criteria script in the embedded MATLAB
editor.

The embedded MATLAB editor lists properties of test. Create test assessments using MATLAB Unit
Test qualifications. Custom criteria supports verification and assertion type qualifications. See “Table
of Verifications, Assertions, and Other Qualifications” (MATLAB). Verifications and assertions operate
differently when custom criteria are evaluated:

» Verifications - Other assessments are evaluated when verifications fail. Diagnostics appear in the
results. Use verifications for general assessments, such as checking simulation against expected
outputs.

Example: test.verifyEqual(lastValue,0)

» Assertions - The custom criteria script stops evaluating when an assertion fails. Diagnostics
appear in the results. Use assertions for conditions that render the criteria invalid.

Example: test.assertEqual(lastValue,0).

Define a Custom Criteria Script

This example shows how to create a custom criteria script for an autopilot test case.
1 Open the test file.

sltest.testmanager.load('AutopilotTestFile.mldatx"')
sltest.testmanager.view

2 In the Test Browser, select AutopilotTestFile > Basic Design Test Cases > Requirement
1.3 Test. In the test case, expand the Custom Criteria section.

6-125

6 Test Manager Test Cases

6-126

3 Enable the custom criteria script by selecting function customCriteria(test).

In the embedded MATLAB editor, enter the following script. The script gets the final value of the
signals Phi and APEng, and verifies that the final values equal 0.

% Get the last values
lastPhi = test.sltest simout.get...

('Signals Reql 3').get('Phi').Values.Data(end);
lastAPEng = test.sltest simout.get...

('Signals Reql 3').get('APEng').Values.Data(end);

% Verify the last values equal 0
test.verifyEqual(lastPhi,o, ...

["Final Phi value: ',num2str(lastPhi),'.']1);
test.verifyEqual(lastAPEng, false, ...

['Final APEng value: ',num2str(lastAPEng),'.']);

Run the test case.
In the Results and Artifacts pane, expand the Custom Criteria Result. Both criteria pass.

- |£| Reguirement 1.3 Test L]
b |l Werify Statements]
v Pl Sir Output (RollAutopilottdIRef :
- = Custorn Criteria Result]

[#| Final Phivalue: 0. { verifyEqual @
[z| Final APEng value: 0. { verifyEg @

Reuse Custom Criteria and Debug Using Breakpoints

In addition to authoring criteria scripts in the embedded MATLAB editor, you can author custom
criteria in a standalone function, and call the function from the test case. Using a standalone function
allows you

* To reuse the custom criteria in multiple test cases.
* To set breakpoints in the criteria script for debugging.
* To investigate the simulation output using the command line.

In this example, you add a breakpoint to a custom criteria script. You run the test case, list the
properties of the test object at the command line, and call the custom criteria from the test case.

Call Custom Criteria Script from the Test Case
1 Navigate to the folder containing the criteria function.

cd(fullfile(docroot, 'toolbox"', 'sltest', 'examples'))
2 Open the custom criteria script

open('sltestCheckFinalRollRefValues.m')

This is a custom criteria function for a Simulink Test test case.
The function gets the last values of Phi and APEng from the

%
%

Process Test Results with Custom Scripts

% Requirements 1.3 test case in the test file AutopilotTestFile.
function sltestCheckFinalRollRefValues(test)

% Get the last values
lastPhi = test.sltest simout.get...

('Signals Regl 3').get('Phi').Values.Data(end)
lastAPEng = test.sltest simout.get...

('Signals Regl 3').get('APEng').Values.Data(end)

% Verify the last values equal 0
test.verifyEqual(lastPhi,o,...

["Final Phi value: ',num2str(lastPhi),'.']1);
test.verifyEqual(lastAPEng, false, ...

['Final APEng value: ',num2str(lastAPEng),'.'1);

Open the test file

sltest.testmanager.load('AutopilotTestFile.mldatx")

sltest.testmanager.view

In the embedded MATLAB editor under Custom Criteria, enter the function call to the custom
criteria:

sltestCheckFinalRol1lRefValues(test)

Set Breakpoints and List test Properties

1

On line 8 of sltestCheckFinalRollRefValues.m, set a breakpoint by clicking the dash to the
right of the line number.

In the Test Manager, run the test case.

The command window displays a debugging prompt.

Enter test at the command prompt to display the properties of the STMCustomCriteria
object. The properties contain characteristics and simulation data output of the test case.

test =
STMCustomCriteria with properties:
TestResult: [1x1 sltest.testmanager.TestCaseResult]
sltest simout: [1x1 Simulink.SimulationOutput]
sltest testCase: [1x1 sltest.testmanager.TestCase]
sltest bdroot: {'RollReference Requirementl 3'}
sltest sut: {'RollAutopilotMdlRef/Roll Reference'}

sltest isharness: 1
sltest iterationName: '

The property sltest simout contains the simulation data. To view the data PhiRef, enter
test.sltest simout.get('Signals Reql 3').get('PhiRef")
ans =

Simulink.SimulationData.Signal
Package: Simulink.SimulationData

Properties:

6-127

6 Test Manager Test Cases

struct with fields:

Name: 'PhiRef’
PropagatedName: ''
BlockPath: [1x1 Simulink.SimulationData.BlockPath]
PortType: 'outport'
PortIndex: 1
Values: [1x1 timeseries]

In the MATLAB editor, click Continue to continue running the custom criteria script.
In the Results and Artifacts pane, expand the Custom Criteria Result. Both criteria pass.
To reuse the script in another test case, call the function from the test case custom criteria.

Assess the Damping Ratio of a Flutter Suppression System

Using a custom criteria script, verify that wing oscillations are damped in multiple altitude and
airspeed conditions.

The Test and Model

The model uses Simscape™ to simulate a Benchmark Active Controls Technology (BACT) / Pitch and
Plunge Apparatus (PAPA) setup. It uses Aerospace Blockset™ to simulate aerodynamic forces on the
wing.

The test iterates over 16 combinations of Mach and Altitude. The test case uses custom criteria
with Curve Fitting Toolbox™ to find the peaks of the wing pitch, and determine the damping ratio. If
the damping ratio is not greater than zero, the assessment fails.

Running this test case requires:

* Simulink® Test™

* Simscape Multibody™
* Aerospace Blockset™

* Curve Fitting Toolbox™

Click the Open File button to open the test file.

In the Test Browser, select Altitude and mach iterations. Open the model by clicking the arrow
next to Model in the System Under Test section.

6-128

Process Test Results with Custom Scripts

qFSF

Oflutter = 1471 PSF

3

D R S
Wing Plunge {in}
[— D
Wing Pitch {deg)
Q (PSF)
del —b[} >
K Aileron Pos (dag)

Plunge
Pitch
| Enable/Disable Controller . Aileron Pos
Controller » C]
armar
0 +_ Emrar TE Pos ¥ TE Pasition (deq)
3
Desired angle = C]
Mach
e L N
States) Siates Pitch
angle
m i # Fitching N' Cutputs
Altitude
Aero Forces
i ™ [nitial Di

BACT Wing & PAPA Mount

Custom Criteria Script

The test case custom criteria uses this script to verify that the damping ratio is greater than zero.

% Get time and data for pitch
Time = test.sltest simout.get('sigsOut').get('pitch').Values.Time(1:15000);
Data = test.sltest simout.get('sigsOut').get('pitch').Values.Data(1:15000);
% Find peaks

[~, peakIds] = findpeaks(Data, 'minpeakheight', 0.002, 'minpeakdistance', 50);
peakTime= Time(peakIds);

peakPos = Data(peakIds);

rn = peakPos(1)./peakPos(2:end);

L = 1:1length(rn);

% Do curve fitting
fittedModel = exponentialFitAndPlot(L, rn);
delta = fittedModel.d;

% Find damping ratio
dRatio = delta/sqrt((2*pi)~2+delta”2);

% Make sure damping ratio is greater than 0
test.verifyGreaterThan(dRatio, 0, 'Damping ratio must be greater than 0');

Test Results

Running the test case returns two conditions in which the damping ratio is greater than zero.

6-129

6 Test Manager Test Cases

~ |I] Scripted_lteration13 (]
v i) Sim Output (sltestFlutterSuppressionSystemEx:
v [lzl Custom Criteria Result o
~ |I] Scripted_lteration14 o
v) Sim Output (sltestFlutterSuppressionSystemEx:
v [lzl Custom Criteria Result o
v [I] Scripted_lteration15]

The wing pitch plots from iteration 12 and 13 show the difference between a positive damping ratio
(iteration 12) and a negative damping ratio (iteration 13).

6-130

Process Test Results with Custom Scripts

0.06 1

0.03 1 i 1 -

-0.03 A

-0.06 1

B 10 12 14

100 4

-100 4

B pitch

[teration 12
(pass)

B pitch

[teration 13
{fail)

Custom Criteria Programmatic Interface Example

This example shows how to set and get custom criteria using the programmatic interface.

Before running this example, temporarily disable warnings that result from verification failures.

warning off Stateflow:Runtime:TestVerificationFailed;
warning off Stateflow:cdr:VerifyDangerousComparison;

Load a Test File and Get Test Case Object

tf = sltest.testmanager.load('AutopilotTestFile.mldatx"');
ts = getTestSuiteByName(tf, 'Basic Design Test Cases');
tc = getTestCaseByName(ts, 'Requirement 1.3 Test');

6-131

6 Test Manager Test Cases

6-132

Create the Custom Criteria Object and Set Criteria

Create the custom criteria object.

tcCriteria

getCustomCriteria(tc)

tcCriteria =
CustomCriteria with properties:

Enabled: 0
Callback: '% Return value: customCriteria...'

Create the custom criteria expression. This script gets the last value of the signal Phi and verifies
that it equals 0.

criteria = ...
sprintf(['lastPhi = test.SimOut.get(''Signals Reql 3'")",..
'.get(''Phi''").Values.Data(end);\n', ...
'test.verifyEqual(lastPhi,0,["''Final: '',num2str(lastPhi),''.""'1);'])
criteria =

'lastPhi = test.SimOut.get('Signals Reql 3').get('Phi').Values.Data(end);
test.verifyEqual(lastPhi,0,['Final: ',num2str(lastPhi),'."']);"

Set and enable the criteria.

tcCriteria.Callback = criteria;
tcCriteria.Enabled = true;

Run the Test Case and Get the Results
Run the test case.

tcResultSet = run(tc);

Get the test case results.

tcResult = getTestCaseResults(tcResultSet);

Get the custom criteria result.
ccResult = getCustomCriteriaResult(tcResult)

ccResult =
CustomCriteriaResult with properties:

Outcome: Failed
DiagnosticRecord: [1x1 sltest.testmanager.DiagnosticRecord]

Restore warnings from verification failures.

warning on Stateflow:Runtime:TestVerificationFailed;
warning on Stateflow:cdr:VerifyDangerousComparison;

Process Test Results with Custom Scripts

sltest.testmanager.clearResults
sltest.testmanager.clear
sltest.testmanager.close

See Also

Related Examples
. “Test Models Using MATLAB Unit Test” on page 6-137
. “Create, Store, and Open MATLAB Figures” on page 6-134

6-133

6 Test Manager Test Cases

Create, Store, and Open MATLAB Figures

6-134

In this section...

“Create a Custom Figure for a Test Case” on page 6-134
“Include Figures in a Report” on page 6-135

You can create figures using MATLAB commands to include with test results and reports. Enter the
commands in a test case section that accepts MATLAB code. These sections include the test case
Custom Criteria section, and callbacks that can execute with your test case.

If you include code that creates figures with your test case, you can:

» Display the figures after the test runs

» Store the figures with your test case

* Include them in a report

» Access stored figures from your test results

To specify this behavior, use the Test File Options section under the Test File settings.

* Select Close all open figures at the end of execution if you do not need to see the figures right
after the test executes, for example, if you are storing the figures or including them in a report.
Clear this check box if you are not storing the figures and you want to view them after the test
executes.

* Select Store MATLAB figures if you want to save the figures with the test results. This option
also enables you to open the figures from the results and to include them in a report.

After you run the test, the figures appear under MATLAB Figures in the test case results.

Create a Custom Figure for a Test Case

In this example, add code that creates a figure to the Custom Criteria section of a test case. To
access the figure from the test results, set options on the test file.

1 Open the model sldemo absbrake.

2 In the Test Manager, create a test file and name it custom figures.

3 Inthe default test case, under System Under Test, set the model to sldemo _absbrake.

4 Under Custom Criteria, select the function customCriteria(test) check box and paste this
code in the text box.

h = findobj (0, 'Name', "ABS Speeds and Slip');
if isempty(h)
h=figure('Position',[26 100 452 700],...

"Name', 'ABS Speeds and Slip',...
"NumberTitle', 'off');

end

figure(h)

set(h, 'DefaultAxesFontSize',8)

% Log data in sldemo _absbrake output
out = test.sltest simout.get('sldemo absbrake output');

% Plot wheel speed and car speed

Create, Store, and Open MATLAB Figures

subplot(3,1,1);
plot(out.get('yout').Values.Vs.Time,
out.get('yout').Values.Vs.Data);
grid on;
title('Vehicle speed'); ylabel('Speed(rad/sec)'); xlabel('Time(sec)');
subplot(3,1,2);
plot(out.get('yout').Values.Ww.Time,
out.get('yout').Values.Ww.Data);
grid on;
title('Wheel speed'); ylabel('Speed(rad/sec)'); xlabel('Time(sec)');
subplot(3,1,3);
plot(out.get('slp').Values.Time,
out.get('slp').Values.Data);
grid on;
title('Slip'); xlabel('Time(sec)'); ylabel('Normalized Relative Slip');
5 Set the figure options for the test file custom figures. Under Test File Options:

* Select Close all open figures at the end of execution. This option closes figures created by
your Test Manager MATLAB code.

* Select Store MATLAB figures.

6 With the test case or the test file selected, click Run.

7 Inthe Results and Artifacts pane, select the test case under the results for this test run. Click
the links under MATLAB Figures to see the plots generated when the test ran. The plot
generated by the code you entered appears under Custom Criteria.

L]
by d
1]
LI
I

4
1
1

m

* Custom Criteria

ABS Speeds and Slip

Include Figures in a Report

You can select the MATLAB Figures option in the Create Test Results Report dialog box to include
custom figures in your report. Alternatively, you can set report options under Test File Options. The
Test File Options settings are saved with the test file.

1 Select the test file custom figures.

2 Under Test File Options, select Generate report after execution. The section expands,
displaying the same report options you can set using the dialog box.

3 To see the figures regardless of how the tests performed, set Results for to Al1 Tests.

4 Select the MATLAB figures check box.

5 With the test file selected, run the test. Running the test generates the report and opens it in the
PDF viewer.

6 Examine the report. The plot generated by the code you entered under Custom Criteria appears
in the report section Custom Criteria Plots.

6-135

6 Test Manager Test Cases

See Also

getOptions (TestCase) | getOptions (TestFile) | getOptions (TestSuite) |
sltest.testmanager.Options

Related Examples
. “Export Test Results and Generate Test Results Reports” on page 7-7

6-136

Test Models Using MATLAB Unit Test

Test Models Using MATLAB Unit Test

In this section...

“Overall Workflow” on page 6-137

“Considerations” on page 6-137

“Comparison of Test Nomenclature” on page 6-137

“Basic Workflow Using MATLAB® Unit Test” on page 6-138

You can use the MATLAB Unit Test framework to run tests authored in Simulink Test. Using the
MATLAB Unit Test framework:

* Allows you to execute model tests together with MATLAB Unit Test scripts, functions, and classes.
* Enables model and code testing using the same framework.
* Enables integration with continuous integration (CI) systems, such as Jenkins™.

Overall Workflow

To run tests with MATLAB Unit Test:

1 Create a TestSuite from the Simulink Test file.
2 Create a TestRunner.
3 Create plugin objects to customize the TestRunner. For example:

+ Thematlab.unittest.plugins.TAPPlugin produces a results stream according to the
Test Anything Protocol for use with certain CI systems.

* The sltest.plugins.ModelCoveragePlugin specifies model coverage collection and
makes coverage results accessible from the command line.
4 Add the plugins to the TestRunner.
5 Run the test using the run method, or run tests in parallel using the runInParallel method.

Considerations

When running tests using MATLAB Unit Test, consider the following:

* Ifyou disable a test in the Test Manager, the test is filtered using MATLAB Unit Test, and the
result reflects a failed assumption.

Comparison of Test Nomenclature

MATLAB Unit Test has analogous properties to the functionality in Simulink Test. For example,

» If the test case contains iterations, the MATLAB Unit Test contains parameterizations.

« If the test file or test suite contains callbacks, the MATLAB Unit Test contains one or more
callbacks fixtures.

Test Case Iterations and MATLAB Unit Test parameterizations

parameterization details correspond to properties of the iteration.

6-137

6 Test Manager Test Cases

Simulink Test MATLAB Unit Test

Iteration type: Scripted parameterization property: ScriptedIteration
Iteration type: Table parameterization property: TableIteration
Iteration name parameterization Name

Test case iteration object parameterization Value

Test Callbacks and MATLAB Unit Test Fixtures

Fixtures depend on callbacks contained in the test file. Fixtures do not include test case callbacks,
which are executed with the test case itself.

Callbacks in Simulink Test Fixtures in MATLAB Unit Test

Test file callbacks FileCallbacksFixture

Test suite callbacks SuiteCallbacksFixture

File and suite callbacks Heterogeneous CallbacksFixture, containing

FileCallbacksFixture and
SuiteCallbacksFixture

No callbacks No fixture

Basic Workflow Using MATLAB® Unit Test

This example shows how to create and run a basic MATLAB® Unit Test for a test file created in
Simulink® Test™. You create a test suite, run the test, and display the diagnostic report.

Before running this example, temporarily disable warnings that result from verification failures.

warning off Stateflow:Runtime:TestVerificationFailed;
warning off Stateflow:cdr:VerifyDangerousComparison;

1. Author a test file in the Test Manager, or start with a preexisting test file. For this example,
AutopilotTestFile tests a component of an autopilot system against several requirements, using
verify statements.

2. Create a TestSuite from the test file.
apsuite = testsuite('AutopilotTestFile.mldatx"');

3. Run the test, creating a TestResult object. The command window returns warnings from the
verify statement failures.

apresults = run(apsuite);

Setting up FileCallbacksFixture

Error occurred in sltest.testmanager.fixtures.FileCallbacksFixture.
As a result, all tests using this fixture failed and did not run to completion.

6-138

Test Models Using MATLAB Unit Test

Error Details:

Error using Simulink.fileGenControl

Terminating build process. The system temporary folder
(C:\TEMP\Bdoc20a 1326390 10420\ibC22023\23) is a subfolder of 'CacheFolder’
(C:\TEMP\Bdoc20a 1326390 10420\ibC22023\23), which is not supported. Change
the system temporary folder so that it is not a subfolder of 'CacheFolder'.

Error in Simulink.fileGenControl
Error in Simulink.fileGenControl

Error in sltest.testmanager.fixtures.CallbacksFixture/setup (line 27)
evalin('base', callback);

Done setting up FileCallbacksFixture

Tearing down FileCallbacksFixture
Done tearing down FileCallbacksFixture: Invoked cleanup callback of "AutopilotTestFile".

Failure Summary:

Name Failed Incomplete Reasol

AutopilotTestFile > Basic Design Test Cases/Requirement 1.3 Test X X Error

4. To view the details of the test, display the Report property of the DiagnosticRecord object. The
record shows that a verification failed during the test.

apresults.Details.DiagnosticRecord.Report
ans =

"Error occurred in sltest.testmanager.fixtures.FileCallbacksFixture.
As a result, all tests using this fixture failed and did not run to completion.

Error using Simulink.fileGenControl
Terminating build process. The system temporary folder (C:\TEMP\Bdoc20a 1326390 10420\1i

Error in Simulink.fileGenControl
Error in Simulink.fileGenControl
Error in sltest.testmanager.fixtures.CallbacksFixture/setup (line 27)

evalin('base', callback);

Enable warnings.

warning on Stateflow:Runtime:TestVerificationFailed;
warning on Stateflow:cdr:VerifyDangerousComparison;

6-139

6 Test Manager Test Cases

See Also
Test | TestResult | TestRunner | TestSuite | matlab.unittest.plugins Package

Related Examples

. “Output Results for Continuous Integration Systems” on page 6-141
. “Run Tests for Various Workflows” (MATLAB)

6-140

Output Results for Continuous Integration Systems

Output Results for Continuous Integration Systems

In this section...

“Test a Model for Continuous Integration Systems” on page 6-141
“Model Coverage Results for Continuous Integration” on page 6-143

You can create model tests that are compatible with continuous integration (CI) systems such as
Jenkins. To create CI-compatible results, run your Simulink Test files using MATLAB Unit Test.

To run CI-compatible tests, follow this general procedure:

1 Create a test suite from the MLDATX test file.
2 Create a test runner.
3 Create plugins for the test output or coverage results.

+ For test outputs, use the TAPPlugin or XMLPlugin.

* For model coverage, use the ModelCoveragePlugin and CoberturaFormat. When
collecting model coverage in Cobertura format:

* Only top model coverage is reflected in the Cobertura XML.

* Only model Decision coverage is reflected, and it is mapped to Condition elements in
Cobertura XML.
Create plugins for CI-compatible output.
Add the plugins to the test output or coverage results.
Add the test output plugins or coverage result plugins to the test runner.
Run the test.

Nou &

Test a Model for Continuous Integration Systems

This example shows how to test a model, publish Test Manager results, and output results in TAP
format with a single execution.

You use MATLAB® Unit Test to create a test suite and a test runner, and customize the runner with
these plugins:
+ matlab.unittest.plugins.TestReportPlugin produces a MATLAB Test Report.

* sltest.plugins.TestManagerResultsPlugin adds Test Manager results to the MATLAB Test
Report.

* matlab.unittest.plugins.TAPPlugin outputs results to a TAP file.

The test case creates a square wave input to a controller subsystem and sweeps through 25 iterations
of parameters a and b. The test compares the alpha output to a baseline with a tolerance of 0.0046.
The test fails on those iterations in which the output exceeds this tolerance.

Before running this example, ensure that the working folder is writable.
1. Open the Simulink® Test™ test file.
testfile = fullfile('fl4ParameterSweepTest.mldatx"');

sltest.testmanager.view;
sltest.testmanager.load(testfile);

6-141

6 Test Manager Test Cases

2. In the Test Manager, configure the test file for reporting.

Under Test File Options, select Generate report after execution. The section expands, displaying
several report options. For more information, see “Save Reporting Options with a Test File” on page
7-8.

3. Create a test suite from the Simulink® Test™ test file.
import matlab.unittest.TestSuite

suite = testsuite('fl4ParameterSweepTest.mldatx"');

4. Create a test runner.

import matlab.unittest.TestRunner

fldrunner = TestRunner.withNoPlugins;

5. Add the TestReportPlugin to the test runner.

The plugin produces a MATLAB Test Report F14Report. pdf.
import matlab.unittest.plugins.TestReportPlugin
pdfFile = 'Fl4Report.pdf';

trp = TestReportPlugin.producingPDF(pdfFile);
addPlugin(fl4runner,trp)

6. Add the TestManagerResultsPlugin to the test runner.
The plugin adds Test Manager results to the MATLAB Test Report.

import sltest.plugins.TestManagerResultsPlugin

tmr = TestManagerResultsPlugin;
addPlugin(fl4runner, tmr)

7. Add the TAPPlugin to the test runner.

The plugin outputs to the F140utput. tap file.

import matlab.unittest.plugins.TAPPlugin
import matlab.unittest.plugins.ToFile

tapFile = 'Fl40utput.tap’;

tap = TAPPlugin.producingVersionl3(ToFile(tapFile));
addPlugin(fl4runner, tap)

8. Run the test.

Several iterations fail, in which the signal-baseline difference exceeds the tolerance criteria.
result = run(fld4runner,suite);

Generating test report. Please wait.
Preparing content for the test report.

Adding content to the test report.
Writing test report to file.

6-142

Output Results for Continuous Integration Systems

Test report has been saved to:
C:\TEMP\Bdoc20a 1326390 10420\1ibC22023\23\tp07d46e3a\simulinktest-ex40056435\F14Report.pdf

A single execution of the test runner produces two reports:

* A MATLAB Test Report that contains Test Manager results.
* A TAP format file that you can use with CI systems.
sltest.testmanager.clearResults

sltest.testmanager.clear
sltest.testmanager.close

Model Coverage Results for Continuous Integration

This example shows how to generate model coverage results for use with continuous integration.
Coverage is reported in the Cobertura format. You run a Simulink® Test™ test file using MATLAB®
Unit Test.

1. Import classes and create a test suite from the test file AutopilotTestFile.mldatx.

import matlab.unittest.TestRunner

aptest = sltest.testmanager.TestFile(fullfile(matlabroot, 'toolbox', 'simulinktest',...
'simulinktestdemos', 'AutopilotTestFile.mldatx'));

apsuite = testsuite(aptest.FilePath);

2. Create a test runner.

trun = TestRunner.withNoPlugins;

3. Set the coverage metrics to collect. This example uses decision coverage. In the Cobertura output,
decision coverage is listed as condition elements.

import sltest.plugins.coverage.CoverageMetrics
cmet = CoverageMetrics('Decision',true);

4. Set the coverage report properties. This example produces a file R13Coverage.xml in the current
working folder. Ensure your working folder has write permissions.

import sltest.plugins.coverage.ModelCoverageReport
import matlab.unittest.plugins.codecoverage.CoberturaFormat

rptfile = 'R13Coverage.xml';
rpt = CoberturaFormat(rptfile)

rpt =
CoberturaFormat with no properties.

5. Create a model coverage plugin. The plugin collects the coverage metrics and produces the
Cobertura format report.

import sltest.plugins.ModelCoveragePlugin

mcp = ModelCoveragePlugin('Collecting',cmet, 'Producing', rpt)

6-143

6 Test Manager Test Cases

mcp =
ModelCoveragePlugin with properties:

RecordModelReferenceCoverage: '<default>'
MetricsSettings: [1x1 sltest.plugins.coverage.CoverageMetrics]

6. Add the coverage plugin to the test runner.
addPlugin(trun,mcp)

% Turn off command line warnings:
warning off Stateflow:cdr:VerifyDangerousComparison
warning off Stateflow:Runtime:TestVerificationFailed

7. Run the test.
APResult = run(trun,apsuite)

APResult =
TestResult with properties:

Name: 'AutopilotTestFile > Basic Design Test Cases/Requirement 1.3 Test'
Passed: 0
Failed: 1
Incomplete: 1
Duration: 0.0851
Details: [1x1 struct]

Totals:
0 Passed, 1 Failed, 1 Incomplete.
0.085073 seconds testing time.

8. Reenable warnings.

warning on Stateflow:cdr:VerifyDangerousComparison
warning on Stateflow:Runtime:TestVerificationFailed

See Also

TestRunner | TestSuite | matlab.unittest.plugins.TAPPlugin |
matlab.unittest.plugins.TestReportPlugin | sltest.plugins.ModelCoveragePlugin |
sltest.plugins.TestManagerResultsPlugin

More About
. “Test Models Using MATLAB Unit Test” on page 6-137

6-144

Filter and Reorder Test Execution and Results

Filter and Reorder Test Execution and Results

In this section...
“Add Tags” on page 6-145
“Filter Tests and Results” on page 6-145

“Run Filtered Tests” on page 6-145

You can run a subset of tests or view a subset of test results by filtering test tags. Tags are a property
of the test case, test suite, or test file.

Add Tags

Add comma-separated tags to the Tags section in the Test Browser. Tags cannot contain spaces;
spaces are corrected to commas.

* TAGE

safety, interface

Filter Tests and Results

In the text box at the top of the Test Browser or Results and Artifacts pane, filter tests by entering
tags: idl, id2, ... where idl and id2 are example test tags. Enter multiple tags separated by
commas to return tests containing any tag in the list.

tags: interface, usability|
~ =] sltestProjectorCtriTests*
= Model baseline tests
] Req_scenario_1

] Reqg_scenario_3

Run Filtered Tests

To run a subset of tests

1 Filter the tests using tags.
2 In the toolstrip, click the down arrow below Run and select Run Filtered.

6-145

Test Manager Results and Reports

* “View Test Case Results” on page 7-2

+ “Export Test Results and Generate Test Results Reports” on page 7-7
* “Customize Test Results Reports” on page 7-11

* “Append Code to a Test Report” on page 7-15

* “Results Sections” on page 7-17

* “Generate Test Specification Reports” on page 7-20

* “Customize Test Specification Reports” on page 7-24

7 Test Manager Results and Reports

View Test Case Results

In this section...

“View Results Summary” on page 7-2

“Visualize Test Case Simulation Output and Criteria” on page 7-3

After a test case has finished running in the Test Manager, the test case result becomes available in
the Results and Artifacts pane. Test results are organized in the same hierarchy as the test file, test
suite, and test cases that were run from the Test Browser pane. In addition, the Results and
Artifacts pane shows the criteria results and simulation output, if applicable to the test case.

J

Results and Artifacts

| ER4

4 =] TestFile e e
2™ Test Suite v Results: 2016-Feb-23 14:55:55 1@ 10
[£) Baseline Test Case ~ [Test File 1o 10
[£) Simulation Testcase‘_\:] Test Suite 19 10

v || Baseline Test Case [x]

» [zl Baseline Criteria Result [x)

» AJ Sim Output (sldemo_absbrake : normal)
v |£] Simulation Test Case [

» A Sim Output (sldemo_absbrake : normal)

View Results Summary

The test case results tab gives a high-level summary and other information about an individual test
case result. To open the test case results tab:

1 Select the Results and Artifacts pane.

Results and Artifacts

Y B T
2 Double-click a test case result.
» Results: 2016-Feb-23 14:55:55 1®& 10
- =] Test File 1®& 10
- Test Suite 1& 10
- |=| Baseline Test Case [x]
b [zl Baseline Criteria Result (]

A tab opens containing the test case results information.

7-2

View Test Case Results

Baseline Test Case x

* SUMMARY
Mame Beeeline Test Casze
Outcome 10
Start Time 02/23/2016 14:55:55
End Time 02232016 14.55:56
Type Baseline Test
Test File Location C\MATLAB\Test File.midat:
Test Case Definition A
Rerun Test Case [)
Baseline File CAMATLABYest_capture.mat
Cause of Failure Criteria evalu ation resulted in failure.

» Simulation Metadata

* TEST REQUIREMENTS

FITERATION SETTINGS

*ERRORS
* OGS

* DESCRIPTION

Visualize Test Case Simulation Output and Criteria

You can view signal data from simulation output or comparisons of signal data used in baseline or
equivalence criteria.

To view simulation output from a test case:

1 Select the Results and Artifacts pane.
2 Expand the Sim Output section of the test case result.
3 Select the check box of signals you want to plot.

7 Test Manager Results and Reports

- [l=| Baseline Criteria Result
) yout Ww
) youtVs
) yout.Sd
O slp

~ o] Sim Qutput (sldemo_absbrake - normal)
« | yout Ww —
< yout Vs —

yout. 5d

Slp —

The Visualize tab appears and plots the signals.

M youtWw M youtVs

o 8 8 0 9

0 1 2 3 4 5 8 7 :]
To view equivalence or baseline criteria comparisons:

1 Select the Results and Artifacts pane.

2 Expand the Baseline Criteria Result or Equivalence Criteria Result section of the test case

result.

View Test Case Results

3 Select the option button of the signal comparison you want to plot.

~ [lz] Baseline Criteria Result
® yout Ww

) yout Vs

() yout.Sd

) slp

= i Sim Output (sldemo_absbrake : nermal)
yout Ww —
yout.Ws —

yout. Sd —

slp

The Comparison tab appears and plots the signal comparison.

W yout Ww (Baseline) M youtWw (Compare Ta)

o 60 6 0 O

70

80

i} 1 2 3 4 5 i} T 8

u Difference M Tolerance

0

3 Vel

o 1 2 3 4 5 B8 T 8

To see an example of creating a test case and viewing the results, see “Compare Model Output To

Baseline Data” on page 6-7.

7-5

7 Test Manager Results and Reports

Note When you run a test multiple times, by default the new signals are added to the plot from
previous test runs. To instead overwrite the plots with only the new results, right-click Sim Output
and select Plot Signals > Overwrite.

See Also

More About

. “Collect Coverage in Tests” on page 6-94

Export Test Results and Generate Test Results Reports

Export Test Results and Generate Test Results Reports

In this section...

“Export Results” on page 7-7

“Create a Test Results Report” on page 7-7

“Save Reporting Options with a Test File” on page 7-8
“Generate Reports Using Templates” on page 7-8
“Generating a Test Results Report” on page 7-10

Once you have run test cases and generated test results, you can export results and generate reports.
Test case results appear in the Results and Artifacts pane.

Export Results

Test results are saved separately from the test file. To save results, select the result in the Test
Manager, in the Results and Artifacts pane, and click Export on the toolstrip.

* Select complete result sets to export to a MATLAB data export file (.mldatx).

4 Results : 2015-Jan-16 11:18:26 19
4 =] Slip Baseline Test]
b |zl Baseline Criteria Result a

r P Sim Output {sldemo_abshbrake

* Select criteria comparisons or simulation output to export signal data to the base workspace or to

a MAT-ile.
4 Results © 2015-Jan-16 11:18:26 10
4 =] Slip Baseline Test]
b |zl Baseline Criteria Result a

v i Sim Output (sldemo_absbrake -

Create a Test Results Report

Result reports contain report overview information, the test environment, results summaries with test
outcomes, comparison criteria plots, and simulation output plots. You can customize the information

included in the report, and you can save the report in three different file formats: ZIP (HTML), DOCX,
and PDF.

1 In the Test Manager, in the Results and Artifacts pane, select results for a test file, test suite,
or test case.

7-7

7 Test Manager Results and Reports

Note You can create a report from multiple result sets, but you cannot create a report from
multiple test files, test suites, or test cases within results sets.

In the toolstrip, click Report.

Enter the title page information and specify the information you want to include in the report. To
enable the option to specify the number of plots per page, select Plots for simulation output
and baseline.

4 Select the File Format to use for the generated file.
Click Create.

Save Reporting Options with a Test File

You can generate a report every time you run a test case in a test file, using the same report settings
each time. To generate a report each time you run the test, set options under Test File Options.
These settings are saved with the test file.

1 In the Test Browser pane, select the test file whose report options you want to set.

2 Under Test File Options, select Generate report after execution. The section expands,
displaying the same report options you can set using the dialog box.

3 Set the options. To include figures generated by callbacks or custom criteria, select MATLAB
figures. For more information, see “Create, Store, and Open MATLAB Figures” on page 6-134.

4 Store the settings with your test file. Save the test file.

5 Ifyou want to generate a report using these settings, select the test file and run the test.

Generate Reports Using Templates
Microsoft Word Format

If you have a MATLAB Report Generator™ license, you can create reports from a Microsoft Word
template. The report can be a Microsoft Word or PDF document.

The report generator in Simulink Test fills information into rich text content controls in your
Microsoft Word template document. For more information on how to use rich text content controls or
customize part templates, see the MATLAB Report Generator documentation, such as “Add Holes in a
Microsoft Word Template” (MATLAB Report Generator).

For a sample template, go to the path:

cd(matlabroot);
cd('help\toolbox\sltest\examples');

In the examples folder, open the file Template.dotx.

In the Microsoft Word template, you can add rich text content controls. Each Simulink Test report
section can be inserted into the rich text content controls. The control names are:

* ChapterTitle — report title

* ChapterTestPlatform — version of MATLAB used to execute tests

* ChapterTOC — test results table of contents

* ChapterBody — test results

For example, the chapter title rich text content control appears in the Microsoft Word template as:

Export Test Results and Generate Test Results Reports

ChapterTitle| Click here to enter text. | ChapterTite

To change the control name, right-click the rich text content control and select Properties. Specify
the control name, ChapterTitle or other name, in the Title and Tag field.

i -

Content Control Properties @
General

Title: ChapterTitle

Tag: ChapterTitle

Show as: |Bounding Eh::uxlzl

Color & hd

Use a style to format text typed into the empty control

Style: |[Default Paragraph Font

Eemove content control when contents are edited
Locking

Content control cannot be deleted

Contents cannot be edited

oK] | Cancel

To generate a report from the Test Manager using a Microsoft Word template:

In the Test Manager, select the Results and Artifacts pane.

Select results for a test file, test suite, or test case.

In the toolstrip, click Report.

Enter the title page information and specify the information you want to include in the report.
Select DOCX or PDF for the File Format.

Specify the full path and file name of your Microsoft Word template in the Template File field.
Click Create.

N o o1 A W N M

PDF or HTML Formats

If you have a MATLAB Report Generator license, you can create reports from a PDF or HTML
template by using a PDFTX or HTMTX file. To generate a report from the Test Manager using a PDF or
HTML template:

In the Test Manager, select the Results and Artifacts pane.

Select results for a test file, test suite, or test case.

In the toolstrip, click Report.

A W N =

Enter the title page information and specify the information you want to include in the report.

7 Test Manager Results and Reports

7-10

5 Select ZIP or PDF for the File Format. Selecting ZIP generates an HTML report.

Specify the full path and file name of your template in the Template File field. For PDE use a
PDFTX file. For HTML, use an HTMTX file. For more information on creating templates, see
“Templates” (MATLAB Report Generator).

7 Click Create.

Generating a Test Results Report
Report test results for a baseline test.

This example shows how to generate a test results report from the Test Manager using a baseline test
case. The model used for this example is sltestTestManagerReportsExample. Switch to a
directory with write permissions.

Load and run the test file

Load and run the test file programmatically using the Test Manager. The test file contains a baseline
test case that fails when it is run. The baseline criteria specified in the baseline test case does not
match the model simulation, which makes the test case fail.

exampleFile = fullfile(matlabroot,
"toolbox', 'simulinktest', 'simulinktestdemos',
'sltestTestManagerReportsTestSuite.mldatx');
sltest.testmanager.load(exampleFile);
baselineObj = sltest.testmanager.run;

Generate the report

Generate a report of the test case results using the results set object. The report is saved as a ZIP
and will show all test results. The report opens when it is completed.

sltest.testmanager.report(baselineObj, 'baselineReport.zip',...
'IncludeTestResults',0, 'IncludeComparisonSignalPlots', true);

View the report when it is finished generating. Notice that the overall baseline test case fails. The
signals in baseline criteria do not match, which causes the test failure. You can view the signal
comparison plots in the report to verify the failure.

sltest.testmanager.clear;

sltest.testmanager.clearResults;

See Also

Related Examples
. “Templates” (MATLAB Report Generator)
. “Create, Store, and Open MATLAB Figures” on page 6-134

Customize Test Results Reports

Customize Test Results Reports

In this section...

“Inherit the Report Class” on page 7-11

“Method Hierarchy” on page 7-11

“Modify the Class” on page 7-12

“Generate a Report Using the Custom Class” on page 7-14

You can choose how to format and aggregate test results by customizing reports. Use the
sltest.testmanager.TestResultReport class to create a subclass and then use the properties
and methods to customize how the Test Manager generates the results report. You can change font
styles, add plots, organize results into tables, include model images, and more. Using the custom
class, requires a MATLAB Report Generator license.

Inherit the Report Class

To customize the generated report, you must inherit from the
sltest.testmanager.TestResultReport class. After you inherit from the class, you can modify
the properties and methods. To inherit the class, add the class definition section to a new or existing
MATLAB script. The subclass is your custom class name, and the superclass that you inherit from is
sltest.testmanager.TestResultReport. For more information about creating subclasses, see
“Design Subclass Constructors” (MATLAB). Then, add code to the inherited class or methods to
create your customizations.

% class definition
classdef CustomReport < sltest.testmanager.TestResultReport

Report customization code here

o® o o°

end

Method Hierarchy

When you create the subclass, the derived class inherits methods from the
sltest.testmanager.TestResultReport class. The body of the report is separated into three
main groups: the result set block, the test suite result block, and the test case result block.

layoutReport

3 T Ty
{ addTitlePage] [addReponTOC] [addReponBodv]

¥ . w
[gEnResultSetB[ock } LgenTeslS_' Block] [gen'rs-ﬁf J

The result set block contains the result set table, the coverage table, and links to the table of

contents.
genResultSetBlock
; \
¥) <
[genTableRowsForResuItMetalnfu] [genCoverageTable] [genHyperLinkToToC

7-11

7 Test Manager Results and Reports

The test suite result block contains the test suite results table, the coverage table, requirements
links, and links to the table of contents.

genTestSuiteResultBlock
A

¥ ¥ 3
{gen MetadataBlockForTestResult] { genCoverageTable } [genHyperLinktoToC]

¥]
[genTableRowchrREsultMetalnfa] [genRequirementLinksTable J

The test case result block contains the test case and test iterations results table, the coverage table,
requirements links, signal output plots, comparison plots, test case settings, and links to the table of
contents.

genTestCaseResultBlock

— /X

¥ I ')
[genMetadataBIockForTestResu\t] [genCoverageTable] [genvaerLinkToToC] [genRunB\ockForTestCaseResult]

]

J . ~ - /
\ N e
genTableRowsForResultMetainfo | " | genBaselineinfoTable P !
genlterationSettingTable genHyperLinktoToC |/ NN
. 1 -~ .
[genRequirementLinksTable J [plotOnesSignalToFile] .
genSignalSummaryTable
genParameterOverridesTable
genSimulationConfigurationTable

Modify the Class

To insert your own report content or change the layout of the generated report, modify the inherited
class methods. For general information about modifying methods, see “Modify Inherited Methods”
(MATLAB).

A simple modification to the generated report could be to add some text to the title page. The method
used here is addTitlePage.

% class definition
classdef CustomReport < sltest.testmanager.TestResultReport
methods
function this = CustomReport(resultObjects, reportFilePath)
this@sltest.testmanager.TestResultReport(resultObjects,...
reportFilePath);
end
end

methods (Access=protected)
function addTitlePage(obj)
import mlreportgen.dom.*;

% Add a custom message
label = Text('Some custom content can be added here');
append(obj.TitlePart, label);

% Call the superclass method to get the default behavior
addTitlePage@sltest.testmanager.TestResultReport(obj);

Customize Test Results Reports

end
end
end

Click here for a code file of this example.

A more complex modification of the generated report is to include a snapshot of the model that was

tested.

% class definition
classdef CustomReport < sltest.testmanager.TestResultReport
methods
function this = CustomReport(resultObjects,reportFilePath)
this@sltest.testmanager.TestResultReport(resultObjects, reportFilePath);
end
end

methods (Access=protected)
% Method to customize test case/iteration result section in the report
function docPart = genTestCaseResultBlock(obj,result)
% result: A structure containing test case or iteration result
import mlreportgen.dom.*;

% Call the superclass method to get the default behavior
docPart = genTestCaseResultBlock@sltest.testmanager.TestResultReport(...
obj,result);

% Get the test case result data for putting in the report
tcrObj = result.Data;

% Insert model screenshot at the test case result level
if isa(tcrObj, 'sltest.testmanager.TestCaseResult')

% Initialize model name
modelName = '';

Check in the test case result if it has model information. If
not, it means there were iterations in the test case or a
model was not used.

testSimMetaData = tcrObj.SimulationMetaData;

o o° of

if (~isempty(testSimMetaData))
modelName = testSimMetaData.modelName;
end

% Get iteration results
iterResults = getIterationResults(tcrObj);

% Get the model name in case test case had iterations
if (~isempty(iterResults))

modelName = iterResults(1l).SimulationMetaData.modelName;
end

Insert model snapshot. This will not work for harnesses. With

minimal changes we can also open the harness used for
testing.

if (~isempty(modelName))

try

o o° of

open_system(modelName) ;

outputFileName = [tempdir, modelName, '.png'l;

if exist(outputFileName, 'file")
delete(outputFileName);

end

print(outputFileName, '-s', '-dpng');

para = sltest.testmanager.ReportUtility.genImageParagraph(...

outputFileName, ...
'5.2in','3.7in");
append(docPart,para);
catch
end
end

end
end
end
end

Click here for a code file of this example.

7-13

7 Test Manager Results and Reports

7-14

Generate a Report Using the Custom Class

After you customize the class and methods, use the sltest.testmanager. report to generate the
report. You must use the 'CustomReportClass' name-value pair for the custom class, specified as
a string. For example:

% Generate the result set from imported data
result = sltest.testmanager.importResults('demoResults.mldatx"');

% Specify the report file name and path
filePath = 'testreport.zip';

% Generate the report using the custom class

sltest.testmanager.report(result, filePath,
"Author', 'MathWorks', ...
'Title', 'Test', ...
'IncludeMLVersion',true, ...
'IncludeTestResults',int32(0), ...
'CustomReportClass', 'CustomReport', ...
"LaunchReport', true);

Alternatively, you can create your custom report using the Test Manager report dialog box. Select a
test result, click the Report button on the toolstrip, and specify the custom report class in the Create
Test Result Report dialog box. For the Test Manager to use the custom report class, the class must be
on the MATLAB path.

See Also
sltest.testmanager.TestResultReport | sltest.testmanager.report

Related Examples
. “Design Subclass Constructors” (MATLAB)

Append Code to a Test Report

Append Code to a Test Report

This example shows how to use a customization class to print integrated code in a test results report.
If you test models that include handwritten code, you can print the code to a report to be reviewed
with the test results.

The cruise control model integrates handwritten C code using an S-Function builder block. The C
code is a utility function that disregards simultaneous pressing of two buttons: Accel/Res and
Coast/Set.

This example requires Simulink® Report Generator™ and Microsoft® Windows.
Example Files

Before running this example, add the example folders to the path and set the filenames.
addpath(fullfile(matlabroot, 'examples', 'simulinktest'));
addpath(fullfile(matlabroot, 'examples', 'simulinktest', 'main'));

rptCustom = 'textAppendReport.m';

resultsFile = 'DoublePressSfcnSimTestResults';

filePath = fullfile(tempdir, 'textAppendedReport.zip');

Report Customization Class

The report customization class textAppendReport.m appends the S-Function code to the end of the
report body.

open(rptCustom)

Load the Results and Create the Report

1. Load the test results file.

result = sltest.testmanager.importResults(resultsFile);
2. Create the test report using the customization.

sltest.testmanager.report(result,filePath, 'CustomReportClass', 'textAppendReport',...
"IncludeTestResults',0)

3. The report appends the S-Function wrapper code:

7-15

7 Test Manager Results and Reports

S-Function Wrapper

e

* Include Files
b

* i

#if defined MATLAB MEX FILE)
#include "tmwtypes h”

#include "simstruc_types.h”

Zelse

#include "rtwtypes h"

Zendif

[* 0500%-SFUNWIZ wrapper_includes Changes BEGIN --- EDIT HERE TO END */
#include <math h=
#include "RejectDoublePress h"
[* 80 %-SFUNWIZ _wrapper_includes Changes END --- EDIT HERE TO _BEGIN #*/
#define u_width 1
#define v_width 1
[
* Create external references here.
x
[* 0505%-SFUNWIZ _wrapper_externs Changes BEGIN --- EDIT HERE TO _END */
/* extern double func(double a); */
[* 0505%-SFUNWIZ_wrapper_externs_Changes END - EDIT HERE TO _BEGIN */

I

* Output functions

x

void RejectDoublePress _sfun Outputs wrapper(const boolean T *AccelResSwin
const boolean T *CoastSetSwin,
boolean_T *AccelResSwOut.
boolean T *CoastSetSwOut)

For more information on report customization, see “Customize Test Results Reports” on page 7-11.

rmpath(fullfile(matlabroot, 'examples', 'simulinktest'));
rmpath(fullfile(matlabroot, 'examples', 'simulinktest', 'main'));
sltest.testmanager.clearResults;

sltest.testmanager.close;

7-16

Results Sections

Results Sections

In this section...

“Summary” on page 7-18

“Test Requirements” on page 7-18

“Iteration Settings” on page 7-18

“Errors” on page 7-18

“Logs” on page 7-18

“Description” on page 7-18

“Parameter Overrides” on page 7-18
“Coverage Results” on page 7-18

“Aggregated Coverage Results” on page 7-18
“Scope coverage results to linked requirements” on page 7-19
“Add Tests for Missing Coverage” on page 7-19

“Applied Coverage Filters” on page 7-19

Double-click a test case results in the Results and Artifacts pane to open a results tab and view the
test case result sections. A baseline test case result is shown as an example.

|z Baseline Test Case

« SURMMARY
Mame Baseline Test Case
Cutcome 18
Start Time 010552016 21:38:14
End Time 01052016 21:38:18
Type Baseline Test
Test File Location CAMATLABTest File.midat:
Test Case Definition A
Rerun Test Case [>

¥ Simmulation Metadata
» TEST REQUIREMEMNTS
b ITERATION SETTIMNGS
» ERRCRE
P LOGE
P DESCRIPTION

» COVERAGE RESLILTS

7-17

7 Test Manager Results and Reports

7-18

Summary
For a selected test case, the Summary section includes the basic test information and the test

outcome. For more information about the simulation, toggle the Simulation Metadata arrow to
expand the section.

For a selected Results item, the Summary section includes information for the Result Set, which
applies to all of its child test suites and test cases.

Test Requirements

A list of test requirements linked to the test case. See “Requirements” on page 6-113 for more
information on linking requirements to test cases.

Iteration Settings

If you are using iterations to run test cases, then this section appears in the results. For more
information about test iterations, see “Test Iterations” on page 6-85.

Errors

This section displays simulation errors captured from the Simulink Diagnostic Viewer. Errors from
incorrect information defined in the test case and callback scripts are also shown here.

Logs

This section displays simulation warnings captured from the Simulink Diagnostic Viewer.

Description

You can include notes about the test results here. These notes are saved with the results.

Parameter Overrides

A list of parameter overrides specified in the test case under Parameter Overrides. If parameter
overrides are not specified, then this section is not shown in the results summary.

Coverage Results

If you collect coverage in your test, then the coverage results for the selected test case results appear
in this section. Coverage results are aggregated at the test file level. For more information about
coverage, see “Collect Coverage in Tests” on page 6-94.

Aggregated Coverage Results

At the Results level, lists the model analyzed for test coverage and includes a link to generate a
coverage report. This section also reports the complexity level and the decision and execution
percentages.

Results Sections

Scope coverage results to linked requirements

Controls whether coverage results include all executed items or only executed items that are
explicitly linked to requirements. If not selected, coverage results include all executed items. If
selected, displays coverage results only for tests explicitly linked to requirements.

Add Tests for Missing Coverage

Generate tests for missing coverage using Simulink Design Verifier. To add an iteration to an existing
test case, select the test case name in Test Case. To create a new test case, select <Create a new test
case> and specify the Test Type and Test File name. See “Increase Test Coverage for a Model” on
page 6-104 and “Increase Coverage by Generating Test Inputs” on page 6-121.

Applied Coverage Filters

At the Results level, lists the filter files applied to the coverage results shown in the Aggregated
Coverage Results section.

7-19

7 Test Manager Results and Reports

Generate Test Specification Reports

7-20

Test specification reports are reports of the test settings and parameters used for test cases, test
suites, or test files. Common uses for these reports are capturing information for test procedure
design reviews and archiving test information. You can create the report before or after running a
test. In addition to using the Test Manager to create the report, you can create the report
programmatically. See the sltest.testmanager.TestSpecReport reference page for examples.

For a test specification report, all of the items you select must be of the same type, either test files,
test suites, or test cases. If you select a mixture of test files, suites, and cases, the Test Spec Report
button and the context menu Create Report option are dimmed. If you select a test file, the report
includes all of its test suites and test cases. If you select a test suite, the report includes all of its test
cases.

This example uses an existing test file (AutopilotTestFile.mldatx), which was created for the
RollAutopilotMdlRef.slx model and its Rol1Reference Requirementl 3 test harness.
Set your current working folder to a writable folder.

To open the Test Manager, enter sltestmgr on the MATLAB command line.

Click Open.

In the Open File dialog box, open the matlab/toolbox/simulinktest/simulinktestdemos
folder and select AutopilotTestFile.mldatx.

5 Highlight the Requirement 1.3 Test test case and click Test Spec Report.

A W N R

Generate Test Specification Reports

4\ Test Manager

TESTS

FoHE‘e T 5 B b i A &m0

33 Co
New Open Save @ Copy Delete TestSpec Run Run with Parallel Visualize Prefere
hd b - b Repart ¥ Stepper b
FILE EDIT RUN RESULTS ENVIRON

Results and Artifacts | m Start Page _Ii, Requirement 1.3 Test
|Fi|1er tests by name or tags, e g. tags: test

« 5 AutopilotTestFile Requirement 1.3 Test

~ 2] Basic Design Test Cases AutopilotTestFile » Basic Design Test Cases » Requirement 1.3 Test
| |=| Requirement 1.3 Test |

Simulation Test

Select releases for simulation: | Current «

Create Test Case from External File
» TAGS
» DESCRIPTION®
» REQUIREMENTS*

1.3.1.1: phiref = 0 if phi < 6 (RollReference#3)

1.3.1.2: phiref = 30 if phi > 30 (RollReference#4)

1.3.1.3: phiref = tk if tk >= 3 (RollReference#5)

+

» SYSTEM UNDER TEST®

Model: | RollAutopilothdIRef RHRAC

« TEST HARNESS®

Hamess: | RollReference_Requirement1_3 " cC R

6 In the Create a Test Specification Report dialog box, specify the Title as RollAutopilot
Model Test Specification Report and the Author as John Smith.

7-21

7 Test Manager Results and Reports

Create a Test Specification Report N ? X
Title Page Information

Title: RollAutopilot Model Test Specification Report

Author John Smith
Include in Report

v Test Details
Logged Signals
Callback Scripts

Coverage Settings

Iterations
External Inputs
Parameter Overrides

Logical and Temporal Assessments

IR IAYEAS
AR A A

System Under Test Configuration Settings

+ Custom Criteria
Output Options
File Format: PDF -

File Name: mynewReport pdf]

Customization Templates

Test Case Reporter []

7 Leave all the report sections selected by default in the Include in Report section.
8 Leave PDF as the default output format.

9 Specify the file name for the saved report as mynewReport.pdf in a writable folder. If your
current working folder is not writable, use a full path name to a writable folder.

10 Leave the Test Case Reporter field blank because this report uses the default test case template.

11 Click Create to generate the report and open it automatically. These images from the report
show the title page, images of the model and harness, and test inputs and assessment
information.

RollAutopilot Model Test
Specification Report

John Smith

02-Tul-2019 10:13:21

7-22

Generate Test Specification Reports

1. Requirement 1.3 Test

1. Requirement 1.3 Test

System Under Test
Model Name: RollAutopilotMdIRef

Requirements-based Testing for Controller Development

Tris moces s usest n Test Secuencs biocks, and T test manager
MATLAB(R)

i otie
P ==
Tas
- Crd b
o Feiig Hooe 9 (Er———
% Cmd

B =
L e
= "
m o sut oo &\
[—
" - n)
7 = = 3
O
- e
et -
al soutis
o
A
T

Harness Name: RollReference_Requirement1_3

q o

) o0 @ -
3
ot

Signal spes

RollAutopilotMdiRef sbx
Copyrgnt 2018 The Matirss inc.

Test Sequence Data
RollReference_Requirement1_3Requirement1_3Test1/Test
Assessment

(Library Link: RollRefAssessLib/Test Assessment)

Symbols

Input

Port Name Class Data Type* Size*

1 PhiRef Data Inherit: Same as Si|-1
mulink

2 Phi Data Inherit: Same as Si (-1
mulink

3 APEng Data Inherit: Same as Si [-1
mulink

4 TurnKnob Data Inherit: Same as Si (-1
mulink

*Note:The model was not compiled during report generation. As a result,
the preceding Symbols section does not include information requiring model
compilation. See the help for the Simulink Report Generator’s Simulink Test
Sequence block component for more information.

Step Hierarchy

. lobalA sment

NormalRange
BelowLowLimit

ExceedPosLimit

ExceedNegLimit

TurnKnobAssessments
+ BelowLowTKLimit
+ NormalTKLimit

s FElse2

+ Elsel

GlobalAssessment

NormalRange

Action

verify(PhiRef == Phi,'Simulink:verify_normal’, 'PhiRef must equal Phi for normal
operation')

When Condition

(abs(Phi) >= & 8& Phi <= 30) & APEng == true && TurnKnob == false
BelowLowLimit

Action

verify(PhiRef == 0, 'Simulink:verify_low','PhiRef must equal 0 for low angle
operation’)

When Condition

abs(Phi) < 6 && APEng == true && TurnKnob == false

ExceedPosLimit

Action

verify(PhiRef == 30, 'Simulink:verify_high_pos', 'PhiRef must equal 30 for high pos
angle operation')

When Condition

See Also
sltest.testmanager.TestSpecReport

More About

. “Customize Test Specification Reports” on page 7-24

7-23

7 Test Manager Results and Reports

Customize Test Specification Reports

In this section...

“Remove Content or Change Report Formatting and Section Ordering” on page 7-24
“Add Content to a Test Specification Report” on page 7-27

You can customize test specification reports by creating a new test case or test suite template or
reporter. The test suite templates and reporter are used for both test suites and test files.

To remove content or change the formatting or section ordering of a report, create a new template.
To add new content, create a new reporter and specify new holes to hold that content.

Note To customize a report, you must have a Simulink Report Generator license.

Remove Content or Change Report Formatting and Section Ordering

To change the formatting or section ordering of a Test Specification Report or to remove content, use
the createTemplate method of the TestCaseReporter or TestSuiteReporter. The
createTemplate method applies to one output type at a time (PDF, HTML, or Word).

This example creates a new test case reporter template for PDF output. The process is the same for
creating templates for other output types and for creating test suite reporter templates.

1 Create a copy of the default TestCaseReporter PDF template in the current working folder.
This folder must be writable. In this case, the folder name is myCustomTCTemplate.

sltest.testmanager.TestCaseReporter.createTemplate(...
'myCustomTCTemplate', 'pdf');

For pdf and zip (zip is used for HTML) output, createTemplate creates a zipped file. docx
(Word) output it creates a .dotx template file.
2 To access the separate template files, unzip the PDF template file.

unzipTemplate('myCustomTCTemplate.pdftx');
Unzipping the file creates a docpart templates.html file and a /stylesheets/root.css

file in the new myCustomTCTemplate folder. PDF and HTML reports use HTML template files.

3 Open and edit the docpart templates.html file using a text editor. This file lists the content
holes in the order in which the content appears in the report. In this file, you can reorder the
report sections and delete template holes. A portion of the docpart templates.html file is
shown.

7-24

Customize Test Specification Reports

docpart_templateshtml X |

<html:>

<head>

<meta charset="utf-3" />

<title>Document Part Templates</title>

<link rel="StyleSheet" href="./stvlesheets/root.css" type="text/css" />
</head>
<body>

<dplibrary>

<dptemplate name="TestCaseReporter">
<!—— filled with test details table ——>

<hole id="TestDetails">TEST DETAILS</hole>

<!—— filled with System Under Test ——>
<hole id="SystemUnderTest">S3YSTEM UNDER TEST</hole>

<!-- filled with Parameter Overrides -->
<hole id="ParameterOverrides">PRARAMETER OVERRIDES</hole>

<!-— filled with Ccallback scripts -->
<hole id="Callbacks">CALLBACKS</hole>

<l-— filled with External inputs table -->
<hole id="Externallnputs">EXTERNAL INPUTS</hole>

<l-— filled with Simulation Outputs —-->
<hole id="SimulationOutputs">SIMULATICN OUTPUTS</hole>

<!—— filled with Config Settings Overrides -->
<hole id="ConfigSettingsOverrides">CONFIG SETTINGS OVERRIDES</hole>

4 Inthe stylesheets folder, open and edit the root.css file using a text editor. In this file, you
can change the table borders, font size, text color, and other styles. For example, to set a font
size to 14 pixels, use font-size: 14px;

7-25

7 Test Manager Results and Reports

rootcss * X

table.TeStCase_TestDetailsTable,

table.ExternallnputsTable, table.ParameterSetsTable, table.TargetSettingsTable, table.

table-layout: fixed;
width: 100%;
border-collapse: collapse;
border-style:solid;
margin-top: 15px;
margin-bottom: 25px;

}

table.TestCase_TestDetailsTable td, table.TestCase_CoverageSettingsTable td, table.Bas
table.ExternalInputsTable td, table.ParameterSetsTable td, table.TargetSettingsTable t

table.SymbolsMetadataTable td {
border-collapse: collapse;
border-style:solid;
white-space: normal;
text-align: start;
font-size: 16px;
font-style: normal;
font-variant: normal;
font—weight: normal;
line-height: normal;
padding: 10px;
hyphenation: hyphen;

}

table.BaselineCriteriaTable th,

table.AssessmentsTable th, table.SymbolsTable th |

padding: Spx;
border-style:solid;

table.TestCase CoverageSettingsTable, table.BaselinecC

table.EquivalenceCriteriaTable th, table.IterationsTab

7-26

To learn more about modifying report styles, see “Modify Styles in PDF Templates” (MATLAB
Report Generator). For information on Word or HTML styles, see “Modify Styles in a Microsoft
Word Template” (MATLAB Report Generator) or “Modify Styles in HTML Templates” (MATLAB

Report Generator), respectively.

5 Zip the files into to the myCustomTCTemplate.pdftx file.

zipTemplate('myCustomTCTemplate.pdftx');
6 Use the custom template for your test specification PDF report by using either of these

processes.

+ Use sltestmgr to open the Test Manager and click Test Spec Report to open the Create a
Test Specification Report dialog box. Add myCustomTCTemplate.pdftx to the Test Case

Reporter field.

* Specify the myCustomTCTemplate.pdftx file name in the TestCaseReporterTemplate
property of the sltest.testmanager.TestSpecReport.

sltest.testmanager.TestSpecReport(test cases, 'testReport.pdf',...

"Author', 'John Smith',
'LaunchReport', true, ..

'Title', 'Autopilot Test Spec Report',...

'TestCaseReporterTemplate', 'MyCustomTCTemplate.pdftx"')

Customize Test Specification Reports

Add Content to a Test Specification Report

To add new content to a report or override how content is added, create a subclass of the
sltest.testmanager.TestCaseReporter or sltest.testmanager.TestSuiteReporter
class. Then add properties and methods for the new content in its class definition file. Add holes to
hold that content in the test suite or test case templates.

This example describes creating a new test case reporter. Use the same process to create a new test
suite reporter.

1

To create a new test case reporter class, use the customizeReporter method of the
TestCaseCreate reporter class. This command creates a new class folder in the current
working folder. This new reporter inherits from the TestCaseReporter class.

customTCRptr = ...
sltest.testmanager.TestCaseReporter.customizeReporter...
('@myTCReporter');

See “Subclass a Reporter Definition” (MATLAB Report Generator).

The @myTCReporter folder has a myTCReporter.m class definition file and a resources folder.
The resources folder contains a templates folder, which contains folders and files for the
report output types:

o pdf folder
o default.pdftx — Zipped PDF template file. Unzip this file using unzipTemplate and
then open the template file using a text editor. After editing, use zipTemplate.
* docx folder
o default.dotx — Word template file. Open this template file by right-clicking and
selecting Open from the context menu. If you click the file name to open it, the Word file

associated with the template opens instead of the template file. See “Open a Template
File” (MATLAB Report Generator).

* html folder

+ default.htmt — Single-file HTML template. Open this file using a text editor.

o default.htmtx — Zipped HTML template file. Unzip this file using unzipTemplate and
then open the template file using a text editor. After editing, use zipTemplate.

For information on templates, see “Templates” (MATLAB Report Generator).
In the @myTCReporter folder, open the class definition file myTCReporter.min a text editor.

7-27

7 Test Manager Results and Reports

myTCReporterm X

classdef myTCReporter < sltest.testmanager.TestCaseReporter

properties
end
methods
function obj = myTCReporter(varargin)
obj = obj@sltest.testmanager.TestCaseReporter (varargin{:});
end
end

methods (Hidden)
function templatePath = getDefaultTemplatePath(~, rpt)
rath = myTCReporter.getClassFolder();
templatePath =
mlreportgen.report.ReportForm.getFormTemplatePath(. ..
path, rpt.Type):
end

end

methods (Static)
function path = getClassFolder ()
[path] = fileparts(mfilename ('fullpath')):;
end

function createTemplate (templatePath, type)
rath = myTCReporter.getClassFolder();
mlreportgen.report.ReportForm. createFormTemplate (. ..
templatePath, type, path);
end

function customizeReporter (toClasspath)
mlreportgen.report.ReportForm. customizeclass (. ..
toClasspath, "myTCReporter");
end

end
end

3 To add new content, add a property and define a get<property> method in the customized
class definition file. Then add the hole to the output type templates.

For example, for a new section named References, add a References property and define a
getReferences method in the myTCReporter.m class definition file.

7-28

Customize Test Specification Reports

myTCReporterm X

classdef myTCReporter < sltest.testmanager.TestCaseReporter

end

properties
References;
end
methods
function obj = myTCReporter (varargin)
obj = objfdsltest.testmanager.TestCaseReporter (varargin{:}):;
end

function content = getReferences(h, rpt)
import mlreportgen.dom. *;
heading = mlreportgen.dom.Headingd ('References');
heading.StyleName = 'ReferencesHeading';
ol = OrderedList;
listTItem = Externallink(
'https://www.mathworks.com/products/simulink-test.html"', ...
'Simulink Test');
append (ol,listItem) ;
listTItem = Externallink(
'https://www.mathworks.com/products/SL_reportgenerator.html’, ...
'Simulink Report Generator');
append (ol,listItem) ;
content = [{heading}, {ol}];
end

Then, add <hole id="References">REFERENCES</hole> to the template files in the desired
location to include the hole content in the generated report for each output type. See “Add Holes
in HTML and PDF Templates” (MATLAB Report Generator) and “Add Holes in a Microsoft Word
Template” (MATLAB Report Generator)

To override an existing method, add a function in the customized class definition file that defines
the get method for the hole.

For example, for the TestDetails hole in the TestCaseReporter, create a method called
getTestDetails in the customized TestCaseReporter class definition file. You do not need to
add a property or hole because they are already specified in the TestCaseReporter class from
which the customized reporter inherits.

To generate a report using the custom reporter, use Simulink Report Generator commands (see
“Define New Types of Reporters” (MATLAB Report Generator)).

These sample commands create a PDF report for a test case. It uses the myTCReporter reporter,
which takes a test case array (test cases) as the input object. Then, add the test case reporter
object to the report and use rptview to display it. The report is saved in the
myCustomTestSpecRpt. pdf file.

myrpt = slreportgen.report.Report('myCustomTestSpecRpt.pdf');
testcaseRptr = myTCReporter('Object',test cases);

7-29

7 Test Manager Results and Reports

7-30

add(myrpt, testcaseRptr);
close(myrpt);
rptview(myrpt);

See Also

More About

. “Customize Test Results Reports” on page 7-11

. “Templates” (MATLAB Report Generator)

. “Open a Template File” (MATLAB Report Generator)

. “Subclass a Reporter Definition” (MATLAB Report Generator)
. “Define New Types of Reporters” (MATLAB Report Generator)

Real-Time Testing

* “Test Models in Real Time” on page 8-2
* “Reuse Desktop Test Cases for Real-Time Testing” on page 8-10

8 RealTime Testing

Test Models in Real Time

8-2

In this section...

“Overall Workflow” on page 8-2

“Real-Time Testing Considerations” on page 8-2

“Complete Basic Model Testing” on page 8-3

“Set up the Target Computer” on page 8-3

“Configure the Model or Test Harness” on page 8-3

“Add Test Cases for Real-Time Testing” on page 8-5

“Assess Real-Time Execution Using verify Statements” on page 8-9

You can test your system in environments that resemble your application. You begin with model
simulation on a development computer, then use software-in-the-loop (SIL) and processor-in-the-loop
(PIL) simulations. Real-time testing executes an application on a standalone target computer that can
connect to a physical system. Real-time testing can include effects of timing, signal interfaces, system
response, and production hardware.

Real-time testing includes:

* Rapid prototyping, which tests a system on a standalone target connected to plant hardware. You
verify the real-time tests against requirements and model results. Using rapid prototyping results,
you can change your model and update your requirements, after which you retest on the
standalone target.

* Hardware-in-the-loop (HIL), which tests a system that has passed several stages of verification,
typically SIL and PIL simulations.

Overall Workflow

This example workflow describes the major steps of creating and executing a real-time test:

1 Create test cases that verify the model against requirements. Run the model simulation tests and
save the baseline data.
Set up the real-time target computer.

Create test harnesses for real-time testing, or reuse model simulation test harnesses. In Test
Sequence or Test Assessment blocks, verify statements assess the real-time execution. In the
test harnesses, use target and host scopes to display signals during execution.

In the Test Manager, create real-time test cases.

5 For the real-time test cases, configure target settings, inputs, callbacks, and iterations. Add
baseline or equivalence criteria.

Execute the real-time tests.
7 Analyze the results in the Test Manager. Report the results.

Real-Time Testing Considerations
* Baseline or equivalence comparisons can fail because of missing data or time-shifted data from

the real-time target computer. When investigating real-time test failures, look for time shifts or
missing data points.

Test Models in Real Time

* You cannot override the real-time execution sample time for applications built from models
containing a Test Sequence block. The code generated for the Test Sequence block contains a
hard-coded sample time. Overriding the target computer sample time can produce unexpected
results.

* Your target computer must have a file system to use verify statements and test case logging.

Complete Basic Model Testing

Real-time testing often takes longer than comparative model testing, especially if you execute a suite
of real-time tests that cover several scenarios. Before executing real-time tests, complete
requirements-based testing using desktop simulation. Using the desktop simulation results:

* Debug your model or make design changes that meet requirements.

* Debug your test sequence. Use the debugging features in the Test Sequence Editor. See “Debug a
Test Sequence” on page 3-54.

* Update your requirements and add corresponding test cases.

Set up the Target Computer

Real-time testing requires a standalone target computer. Simulink Test only supports target
computers running Simulink Real-Time™ . For more information, see:

* “Development Computer Setup and Configuration” (Simulink Real-Time)
* “Troubleshooting in Simulink Real-Time” (Simulink Real-Time)

Configure the Model or Test Harness
Real-time applications require specific configuration parameters and signal properties.
Code Generation

A real-time test case requires a real-time system target file. In the model or harness configuration
parameters, on the Apps tab, under Code Generation, click Simulink Coder. In the C Code tab,
verify that the system target file is slrt. t1lc. If the button in the Output section is Custom Target,
click that button and verify that the Custom target is slrt.tlc. Ifit isn't, select Select system
target file and select slrt.tlc to generate system target code.

If your model requires a different system target file, you can set the parameter using a test case or
test suite callback. After the real-time test executes, set the parameter to its original setting with a
cleanup callback. For example, this callback opens the model and sets the system target file
parameter to slrt.tlc for the model sltestProjectorController.

open_system(fullfile(matlabroot, 'toolbox"', 'simulinktest’,...
'simulinktestdemos', 'sltestProjectorController'));

set param('sltestProjectorController', 'SystemTargetFile', 'slrt.tlc');
Data Import/Export Format

Models must use a data format other than dataset. To set the data format:

1 Open the configuration parameters.

8-3

8 RealTime Testing

8-4

2 Select the Data Import/Export pane.

3 Select the Format.

Log Signals from Real-Time Execution

To configure your signals of interest for real-time testing:

* Enable signal logging in the Configuration Parameters, in the Data Import/Export pane.

» Connect signals to Scope blocks from the Simulink Real-Time block library. Set the Scope type

property to File.

* Name each signal of interest using the signal properties. Unnamed signals can be assigned a
default name which does not match the name of the baseline or equivalence signal.

In this example test harness, the logged signals:

* Have explicit names.

» Use file scopes to return signal data to the Test Manager.
» Use target scopes to display data on the target computer.

Target Soope
“J| a4

l.-"JI -IE;,S‘-’;ME | Soope 3
Scope
NI=CEET

l -JI FlleSompe | Scope 4

Soope 1
Target Scope
[= » @6
-]I lle Soope | soope 5

Soope 2

lste=@ mectorComnl T
FanOn FanOn
1 an_of om_ofr fan_on
razpefd Fanspeed T
far_smeas
3 Ters o T -
LampOn L] Lampln T
Bmp_on
[
Test Sequence

View Signals During Real-Time Execution

To display signals on the target computer during real-time execution, add target scopes to your test
harness. To display signals in the Simulink Real-Time Explorer, add host scopes. This test harness
includes both target and host scopes for signal visualization. See Scope.

Test Models in Real Time

Host Scope
Id: 3

Host Scope

h

o | Target Scope
v Id: 2

Target Scope

File Scope
Id: 1

File Scope

Y

On_normal_tEmp
on offf— = on_off

T
ek_on_of checledOnOF <>

L~
- Tproj f———— Tproj chik_on_off

h J

Harness Inputs OniOff Chedk

Add Test Cases for Real-Time Testing

Use the Test Manager to create real-time test cases.

1 In the Simulink toolstrip, on the Apps tab under Model Verification, Validation, and Test, select
Simulink Test.

2 Click Simulink Test Manager.

3 In the Test Manager, select New > Real-Time Test.

Test Type

You can select a baseline, equivalence, or simulation real-time test. For simulation test types, verify
statements serve as pass/fail criteria in the test results. For equivalence and baseline test types, the
equivalence or baseline criteria also serve as pass/fail criteria.

Baseline — Compares the signal data returned from the target computer to the baseline in the
test case. To compare a real-time execution result to a model simulation result, add the model
baseline result to the real-time test case and apply optional tolerances to the signals.

Equivalence — Compares signal data from a simulation and a real-time test, or two real-time
tests. To run a real-time test on the target computer, then compare results to a model simulation:
* Select Simulation 1 on target.

* C(Clear Simulation 2 on target.

The test case displays two simulation sections, Simulation 1 and Simulation 2.

Comparing two real-time tests is similar, except that you select both simulations on target. In the
Equivalence Criteria section, you can capture logged signals from the simulation and apply
tolerances for pass/fail analysis.

Simulation: Assesses the test result using only verify statements and real-time execution. If no
verify statements fail, and the real-time test executes, the test case passes.

8 RealTime Testing

8-6

Load Application From

Using this option, specify how you want to load the real-time application. The real-time application is
built from your model or test harness. You can load the application from:

* Model — Choose Model if you are running the real-time test for the first time, or your model
changed since the last real-time execution. Model typically takes the longest because it includes
model build and download. Model loads the application from the model, builds the real-time
application, downloads it to the target computer, and executes it on the target computer.

* Target Application — Choose Target Application to send the target application from the
host to a target computer, and execute the application. Target Application can be useful if
you want to load an already-built application on multiple targets.

* Target Computer — This option executes an application that is already loaded on the real-time
target computer. You can update the parameters in the test case and execute using Target

Computer.

This table summarizes which steps and callbacks execute for each option.

Test Case Execution
Step (first to last)

Load Application From

Model Target Application Target Computer
Executes pre-load Yes Yes Yes
callback
Loads Simulink model |Yes No No
Executes post-load Yes No No
callback
Sets Signal Builder Yes No No
group
Builds real-time Yes No No
application from model
Downloads real-time Yes Yes No
application to target
computer
Sets runtime Yes Yes Yes
parameters
Executes pre-start real- |Yes Yes Yes
time callback
Executes real-time Yes Yes Yes
application
Executes cleanup Yes Yes Yes
callback
Model

Select the model from which to generate the real-time application.

Test Harness

If you use a test harness to generate the real-time application, select the test harness.

Test Models in Real Time

Simulation Settings Overrides

For real-time tests, you can override the simulation stop time, which can be useful in debugging a
real-time test failure. Consider a 60-second test that returns a verify statement failure at 15
seconds due to a bug in the model. After debugging your model, you execute the real-time test to
verify the fix. You can override the stop time to terminate the execution at 20 seconds, which reduces
the time it takes to verify the fix.

Callbacks

Real-time tests offer a Pre-start real-time application callback which executes commands just
before the application executes on the target computer. Real-time test callbacks execute in a
sequence along with the model load, build, download, and execute steps. Callbacks and step
execution depends on how the test case loads the application.

Sequence

Load application from:

Model

Load application from:

Target application

Load application from:

Target computer

Executes first

Preload callback

Preload callback

Preload callback

Post-load callback

Pre-start real-time
callback

Pre-start real-time
callback

Pre-start real-time
callback

Executes last

Cleanup callback

Cleanup callback

Cleanup callback

Iterations

You can execute iterations in real-time tests. Iterations are convenient for executing real-time tests
that sweep through parameter values or Signal Builder groups. Results appear grouped by iteration.
For more information on setting up iterations, see “Test Iterations” on page 6-85. You can create:

+ Tabled iterations from a parameter set — Define several parameter sets in the Parameter
Overrides section of the test case. Under Iterations > Table Iterations, click Auto Generate
and select Parameter Set.

» Tabled iterations from signal builder groups — If your model or test harness uses a signal builder
input, under Iterations > Table Iterations, click Auto Generate and select Signal Builder
Group. If you use a signal builder group, load the application from the model.

* Scripted iterations — Use scripts to iterate using model variables or parameters. For example, in
the model sltestRealTimeOscillatorTestExample, the SettlingTest harness uses a Test
Sequence block to create a square wave test signal for the oscillator system using the parameter

frequency.

8 RealTime Testing

u| _ File 5co
v Id: 1 P
Scope
», Target 5 oo
= g Bl
Soope 1 |
L
File Scope
v Id: 3 Scope
Soopel
o | Target 5ool
v rgIu:I:4 F=
[<] Soopel
sliestRe alTimel scillab rTe stExample
1 _ _
! L - =ini Owrtpoirt 1 1 3
3 Est_input osC_output
Owriport
Test Seguence A
I ta=t ¥
2
B ook
TestAssessment
Symbols Step Transition Next Step
Input -
Initialize: 1. true step 2 ¥
Output waveform = 0;
1. [waveform
step 2
Local waveform =square(et*frequency)*0 5 + 0 5;
Constant
Parameter
frequency

In the test file SettlingTestCases, the real-time test scripted iterations cover a frequency
sweep from 5 Hz to 35 Hz. The script iterates the value of frequency in the Test Sequence block.

%% Iterate over frequencies to determine best oscillator settings

% Create parameter sets
freq = 5.0:1.0:35.0;

for i iter = 1l:length(freq)
% Create iteration object
testItr = sltestiteration();

Test Models in Real Time

% Set parameters
setVariable(testItr, 'Name', 'frequency', 'Source',...
'Test Sequence', 'Value',freq(i iter));

% Register iteration
addIteration(sltest testCase, testItr);
end

Assess Real-Time Execution Using verify Statements

In addition to baseline and equivalence signal comparisons, you can assess real-time test execution
using verify statements. A verify statement assesses a logical expression and returns results to
the Test Manager. Use verify inside a Test Sequence or Test Assessment block or, if you have a
Stateflow license, in a Stateflow chart. See “Assess Model Simulation Using verify Statements” on
page 3-15.

Results and Artifacts Modelinloop tests » [} StartPage x| Visualize x

& v M Test Sequence/Check:Simulink:verify_sc4_on
: M Test Sequence/Check2:Simulink:verify_scd_off
M Test Assessment/GlobalAssess/OverheatCondition:Simulink:verify_overheat

~ =] RTT req scenario 4

= [zl Verify Statements
+ Test Sequence/Check:Simulin...
v Test Sequence/Check2:Simuli...

Test Assessment/GlobalAsse. ..
+ Test Assessment/GlobalAsse...

Fass
Test Assessment/GlobalAsse. .. =

9 & & 0 00 OO

Test Assessment/GlobalAsse. ..

v Pl Sim Qutput (sltestProjectorController -)

E WALUE Untested

Name " Test Assessment/GlobalAss... » 0 2 4 & 8 10 12 14

See Also

Related Examples
. “Test Real-Time Application” (Simulink Real-Time)

8-9

8 RealTime Testing

Reuse Desktop Test Cases for Real-Time Testing

8-10

Convert Desktop Test Cases to Real-Time

In the Test Manager, you can reuse test cases for real-time testing by converting desktop test cases to
real-time test cases. For convenience, data can be stored externally so that each test case accesses
common inputs and baseline data. The overall workflow is as follows:

1 Create a baseline, equivalence, or simulation test case with external inputs. For baseline tests,
add baseline data from external files.

In the Test Manager, select the test case in the Test Browser.

Copy the test case. Right-click the test case and select Copy.

Paste the new test case into a test suite.

Rename the new test case.

Right-click the new test case, and select Convert to > Real-Time Test. For equivalence tests,
select which simulation (simulation 1 or simulation 2) to run in real time.

Select the Target Computer and Load Application From options.

Ensure that the model settings are compatible with real-time test execution. For more
information, see “Development Computer Setup and Configuration” (Simulink Real-Time).

oA WN

0 N

Use External Data for Real-Time Tests

You can simplify test input data management by defining the input data in an external MAT or Excel
file. Map the data to root inports in your model or test harness for desktop simulation. When you
convert the desktop simulation test case into a real-time test, the test case uses the same inport

mapping.
Using external data depends on how your test case loads the real-time application:
Load Real-Time Application from Model

If you are using external data for a real-time test, loading the real-time application from the model
gives you the option of using an Excel file, MAT file, or CSV file. The external data is built into the
application, and you can rerun the application from the target application or target computer.

In the System Under Test section, set the application to load from Model. In the Inputs section of
the test case, click Add, and select an Excel file, MAT file, or CSV file. Map the data to your model
inports. For more information on input mapping, see “Run Tests Using External Data” on page 6-50.

Load Real-Time Application from Target Application or Target Computer

After running the test from the model, you can run the test from the target application or target
computer without recompiling. The application uses the input mapping from when the test ran from
the model.

You can map external data to a test case loaded from the target application or target computer,
without first running from the model. The external data must be in a MAT file, in the same format
used if the test is loaded from the model. In the System Under Test section, select to load the
application from the Target Applicationor Target Computer. In the Inputs section, click Add
and select a MAT file. The Input string is not editable.

Reuse Desktop Test Cases for Real-Time Testing

Example

This example shows a basic desktop test case reuse workflow using external input data defined in an
Excel file. You run the baseline test case on the desktop, update the baseline data, convert a copy of
the test case to a real-time test, then run the test case on a target computer. This example runs only
on Windows systems.

1

Open the test file.

tf = sltest.testmanager.TestFile(fullfile(matlabroot, 'examples’,...
'simulinktest', 'sltestTestCaseRealTimeReuseExample.mldatx'));
sltest.testmanager.load(tf.Name);

sltest.testmanager.view;

The test file runs a transmission shift controller algorithm through four iterations, each
corresponding to a different test scenario: passing, gradual acceleration, hard braking, and
coasting. There is baseline data associated with each scenario for the signals vehicle speed
and output torque.

=

-

g |=| Baseline Test m StartPage =
» |[TERATIOMS*
= = sltestTestCaseReallimeReuseExarmple™

Test Suite ~ TABLE ITERATICONS*

(=) Bassiina Tast | HantE SIGNAL BUILDER GROUR | PARAVETER SET EXTERNAL INPUT BASELINE +
+ Passing [Defaull] Mone [Defzul] None BrakeThroftle_InputD. .. haselinel.mat
V| GradualAceel [Defaull] None [Defauil] None BrakeThrottle_InputD... haselineZ.mat
+ HardBrake [Dafaull Mone [Defaul] Mone BrakeThrotile_InputD. .. haseline2.mat
+ Coast [Defaull] None [Defzuil] None BrakeThrottle_InputD... baselined.mat

WN

e

& add & Delete ~

Run the baseline test.

Under the Baseline Criteria result, select output torque under the Passing result to view the
comparison. The Passing result fails due to transient signals that fall outside the relative
tolerance.

8-11

8 RealTime Testing

H unnarmed {Baseline) MW outputtorgque (Compare To) W Tolerance

1000

S00

a 2 4 G] 10 12 1< A6 18 20 22 24 26 28 20

W Difference M Tolerance

20

10

| l J

a 2 4 G] 10 12 1< A6 18 20 22 24 26 28 20

=

4 Assume that these transient signals are not significant, and update the baseline data:

1 Click Next Failure. The first failure region is bounded by data cursors.
2 Click Update Baseline + Update selected signal region, and confirm that you want to
overwrite the data.
3 Repeat this process for the other two failure regions.
5 Copy and convert the baseline test case to a real-time test:

1 In the Test Browser, right-click Baseline Test and select Copy.

2 Paste the new test case under the test suite.

3 Rename the new tests case RT Baseline Test.

4 Right-click RT Baseline Test and select Convert to > Real-Time Test.
6 Run the real-time test case:

1 Set the Target Computer.
2 Set the system under test to load from Model.

QEEEIGUGCEI N Fesults and Adifacts m Start Page x @ Compatison x| |S| RT Baseline Test

| ~SYSTEM UNDER TEST®

~ 5] sltestTestCaseRealTimeReuseExampla®

- Test Suite Load Application From | Model v
|£| Baseline Test _
[RT Baseline Test Model: | sitestCarRootinport BEaRaAC
Target Camputer: | SLRTLABTGTT h

» TEST HARMESS

» SIMULATION SETTINGS OVERRIDES

3 Runthe RT Baseline Test test case.

8-12

Reuse Desktop Test Cases for Real-Time Testing

7 In this example, several of the scenarios fail due to timing impacts on the data output. For
example, in the HardBrake iteration, the vehicle speed output falls outside the relative
tolerance after the brake is applied. To resolve this failure, you could:

* Increase the relative tolerance for the real-time test.
* Create a separate set of baseline data for the real-time test.

Results and Arifacts [start Page |=| RT Baseline Test [comparison
=] ‘l_f W vehicle speed (Baseling) M wehicle speed (Compare To) M Tolerance
HAE STATUS -
~ |=| RT Basgeline Test 1@ 3@ -
b I Coast (<]
v I] Gradualdccel] ®
~ [I| HardBrake]
~ [l=| Baseline Criteria Result [}
® wehicle speed] o
8 R G o o 2z 4 6 E 10 12 14 15 1z 20 22 24 26 28 20
v Ul Bageling [baselingd. mat) . W Difference M Tolerance
— —
3 008 —_— | ——
]I I D
PROPERTY WALUE
=) 003
Marme [z] vehicle speed
Status]
Absolute Tolerance 0 o
Relative Tolerance 0.10%
Leading Tolerance 0 - o z 4 G E 10 12 14 15 13 20 22 249 26 28 30

Related Examples

. “Test Real-Time Application” (Simulink Real-Time)

8-13

Verification and Validation

* “Test Model Against Requirements and Report Results” on page 9-2

* “Analyze a Model for Standards Compliance and Design Errors” on page 9-7
* “Perform Functional Testing and Analyze Test Coverage” on page 9-9

* “Analyze Code and Test Software-in-the-Loop” on page 9-12

9 Verification and Validation

Test Model Against Requirements and Report Results

Requirements - Test Traceability Overview

Traceability between requirements and test cases helps you interpret test results and see the extent
to which your requirements are verified. You can link a requirement to elements that help verify it,
such as test cases in the Test Manager, verify statements in a Test Sequence block, or Model
Verification blocks in a model. When you run tests, a pass/fail summary appears in your requirements
set.

This example demonstrates a common requirements-based testing workflow for a cruise control
model. You start with a requirements set, a model, and a test case. You add traceability between the
tests and the safety requirements. You run the test, summarize the verification status, and report the
results.

System Functional
requirements requirements |-—————LUpdate reguirements
i
i ——————— T raceabilit',r————:
Traceability !
| |
I |
Develop Develop Develop test
specification /| ——= detailed e cases o Run tests ——#=| Report results
architecture model

9-2

T Refine

In this example, you conduct a simple test of two requirements in the set:

That the cruise control system transitions to disengaged from engaged when a braking event has
occurred

That the cruise control system transitions to disengaged from engaged when the current vehicle
speed is outside the range of 20 mph to 90 mph.

Display the Requirements

1

Create a copy of the project in a working folder. The project contains data, documents, models,
and tests. Enter:

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’,...
'verification', 'src', 'cruise')
run(fullfile(path, 'slVerificationCruiseStart'))

In the project models folder, open the simulinkCruiseAddRegExample.s1lx model.

Display the requirements. Click the == icon in the lower-right corner of the model canvas, and
select Requirements. The requirements appear below the model canvas.

Test Model Against Requirements and Report Results

4 Expand the requirements information to include verification and implementation status. Right-
click a requirement and select Verification Status and Implementation Status.

simulinkCruiseAddReqExample
® |s'\mu|ink0uwsaAddRquxample » -
CruiseOnOff \
=+ ralzen £ CruiseOnOif
CruiseOnOff o)
d
_ —, boolean =+ Brake Wi Breie » jage
@—— efbaged
O Brake
single Speed
=
Speed
=, boolean E—.Coastsatsw CoastSetSw
4
CoastSetSw
@I}nnlean ’—
= — AccelResSw
s | AccelResSw Compute target speed
» ||
([|
Requirements - simulinkCruiseAddReqExample P x
view: [reauiremenss ~| [[0V[@] [B[[E] =] [4][2 @] e
v % simulinkCruiseChar... []-]
Bi A ST —] |
Bl 2 Functional Requirements Functional Requirements [)()
Sl Safety Requirements Safety Requirements [][]
Ready 125%

Property Inspector

Reguirement: A 1.2

Details
* Properties
Type: Functional -
Index: 1.2

Custom ID: |4 1.2

Summary: ‘ Set Speed | Decelerate Button

Description Rationale

4 [Juo 5 7 U W

Set Speed/Decelerate Button
The controller shall have an input button to:

set the target speed to the current vehicle speed when the cruise
control is not engaged (active)

decelerate (reduce) the target speed when the cruise control is
engaged (active)

Keywords: |

P Revision information:

¥ Links

El 4= iImplemented by:
T CoastSetsw

»r Comments

FixedStepDiscrete

5 In the Project window, open the Simulink Test file sTReqTests.mldatx from the tests folder.

The test file opens in the Test Manager.

Link Requirements to Tests

Link the requirements to the test case.

1 In the Project window, open the Simulink Test file sLReqTests.mldatx from the tests folder.
The test file opens in the Test Manager. Explore the test suite and select Safety Tests.

Return to the model. Right-click on requirement S 3.1 and select Link from Selected Test

Case.

Alink to the Safety Tests test case is added to Verified by. The yellow bars in the Verified

column indicate that the requirements are not verified.

9-3

9 Verification and Validation

9-4

Requirements - simulinkCruiseAddReqExample P X
View: |Requirements | |[% 3| E | | & [E & || B il (= Se...
I ~
v B 3 Safety Requirements | Safety Requirements [][]
‘H 31 531 Vehicle braking dise... [))
B 32 53.2 System engagemen... [][]
E 33 |s33 Target speed limita... [)]
E 34 534 Speed outside limit... l Il I W
Ready 150%

2 Also add alink foritem S 3.4.

Run the Test

¥ Links

El 4= Verified by:
= Safety Tests @

FixedStepDiscrete

The test case uses a test harness SafetyTest Harnessl. In the test harness, a test sequence sets
the input conditions and checks the model behavior:

* The BrakeTest sequence engages the cruise control, then applies the brake. It includes the

verify statement

verify(engaged == false, ...

'verify:brake', ...
'system must disengage when brake applied')

* The LimitTest sequence engages the cruise control, then ramps up the vehicle speed until it
exceeds the upper limit. It includes the verify statement.

verify(engaged == false, ...

'verify:limit',...
'system must disengage when limit exceeded')

1 Return to the Test Manager. To run the test case, click Run.

2 When the test finishes, review the results. The Test Manager shows that both assessments pass
and the plot provides the detailed results of each verify statement.

Test Model Against Requirements and Report Results

Results and Artifacts

|Filte' results by name or tags, e.g. tags: test

\}_f

» Results: 2019-Jun-21 11:29:55 1@
+ [E] Safety Tests

- [[&] Verify Statements
verify-brake

' wverify:limit

Block Path
Interp Method

Sync Method

Units

Sample Time

Data Type

[werify:limit
SafetyTest_Harness1/Test ..
zoh

union

slTestResult

[5] safety Tests x| [Visualize x

W verify:limit

Fail -

Pass 4 perpmmrrrmyessrnnne rrssrennes T R S —— —

Untested 4 bttt

3

Return to the model and refresh the Requirements. The green bar in the Verified column
indicates that the requirement has been successfully verified.

Requirements - simulinkCruiseAddRegExample LI 4 | |
View: [Requirements ~ | (5] 0 [®] [L][E 4B @ e Kepords: |

Index : = Verified I ted ~ } Revision information:

v E 3 Safety Requirements Safety Requirements
ety Req ety Req (|)() |~ o
B 32 53.2 System engagement spe...)) El 4= Verified by:
E 33 533 Target speed limitations [][] = Safety Testso
v

Ready 125% FixedStepDiscrete

Report the Results

1

Create a report using a custom Microsoft Word template.

From the Test Manager results, right-click the test case name. Select Create Report.

In the Create Test Result Report dialog box, set the options:

+ Title — SafetyTest

* Results for — Al1l Tests

* File Format — DOCX
* For the other options, keep the default selections.

Enter a file name and select a location for the report.

For the Template File, select the ReportTemplate.dotx file in the documents project

folder.

Click Create.

9-5

9 Verification and Validation

2 Review the report.

a The Test Case Requirements section specifies the associated requirements

b The Verify Result section contains details of the two assessments in the test, and links to
the simulation output.

See Also

Related Examples

. “Link to Requirements” on page 1-2
. “Validate Requirements Links in a Model” (Simulink Requirements)
. “Customize Requirements Traceability Report for Model” (Simulink Requirements)

9-6

Analyze a Model for Standards Compliance and Design Errors

Analyze a Model for Standards Compliance and Design Errors

Standards and Analysis Overview

During model development, check and analyze your model to increase confidence in its quality. Check
your model against standards such as MAB style guidelines and high-integrity system design
guidelines such as DO-178 and ISO 26262. Analyze your model for errors, dead logic, and conditions
that violate required properties. Using the analysis results, update your model and document
exceptions. Report the results using customizable templates.

standards |
1
1
-_____/r'ﬁ‘“ !
I 1
: |
1
1
' Model analysis: check
Develop detailed > Add.prop!erty > standards, checkfor_d.eslgn Y—»| Report results
model specifications errors, check specified
properties
A N
Resolve errorsand | Replicate errors
confirm exceptions [Analyze dependencies

Check Model for Style Guideline Violations and Design Errors

This example shows how to use the Model Advisor to check a cruise control model for MathWorks®
Advisory Board (MAB) style guideline violations and design errors. Select checks and run the analysis
on the model. Iteratively debug issues using the Model Advisor and rerun checks to verify that it is in
compliance. After passing your selected checks, report results.

Check Model for MAB Style Guideline Violations

In Model Advisor, you can check that your model complies with MAB modeling guidelines.

1

Create a copy of the project in a working folder. On the command line, enter

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’,...
'verification', 'src', 'cruise')
run(fullfile(path, 'slVerificationCruiseStart'))

Open the model. On the command line, enter

open_system simulinkCruiseErrorAndStandardsExample

In the Modeling tab, select Model Advisor.

Click OK to choose simulinkCruiseErrorAndStandardsExample from the System Hierarchy.
Check your model for MAB style guideline violations using Simulink Check.

9 Verification and Validation

9-8

a In the left pane, in the By Product > Simulink Check > Modeling Standards > MAB
Checks folder, select:
* Check Indexing Mode
¢ Check model diagnostic parameters

b Right-click on the MAB Checks node and select Run Selected Checks.

¢ Click Check model diagnostic parameters to review the configuration parameter settings
that violate MAB style guidelines.

d In the right pane, click the parameter links to update the values in the Configuration
Parameters dialog box.

e To verify that your model passes, rerun the check. Repeat steps ¢ and d, if necessary, to
reach compliance.

f To generate a results report of the Simulink Check checks, select the MAB Checks node,
and then, in the right pane click Generate Report....

Check Model for Design Errors

While in Model Advisor, you can also check your model for hidden design errors using Simulink
Design Verifier.

1 In the left pane, in the By Product > Simulink Design Verifier folder, select Design Error
Detection. All the checks in the folder are selected.
In the right pane, click Run Selected Checks.

3 After the analysis is complete, expand the Design Error Detection folder, then select checks to
review warnings or errors.

4 In the right pane, click Simulink Design Verifier Results Summary. The dialog box provides
tools to help you diagnose errors and warnings in your model.

a Review the results on the model. Click Highlight analysis results on model. Click the
Compute target speed subsystem, outlined in red. The Simulink Design Verifier Results
Inspector window provides derived ranges that can help you understand the source of an
error by identifying the possible signal values.

b Review the harness model. The Simulink Design Verifier Results Inspector window displays
information that an overflow error occurred. To see the test cases that demonstrate the
errors, click View test case.

¢ Review the analysis report. In the Simulink Design Verifier Results Inspector window, click
Back to summary. To see a detailed analysis report, click HTML or PDF.

See Also

Related Examples

. “Check Model Compliance by Using the Model Advisor” (Simulink Check)
. “Collect Model Metrics Using the Model Advisor” (Simulink Check)

. “Run a Design Error Detection Analysis” (Simulink Design Verifier)

. “Prove Properties in a Model” (Simulink Design Verifier)

Perform Functional Testing and Analyze Test Coverage

Perform Functional Testing and Analyze Test Coverage

Functional testing begins with building test cases based on requirements. These tests can cover key
aspects of your design and verify that individual model components meet requirements. Test cases
include inputs, expected outputs, and acceptance criteria.

By collecting individual test cases within test suites, you can run functional tests systematically. To
check for regression, add baseline criteria to the test cases and test the model iteratively. Coverage
measurement reflects the extent to which these tests have fully exercised the model. Coverage
measurement also helps you to add tests and requirements to meet coverage targets.

Functional requirements

Create test inputs or Add run-time
import external test data verifications
» Runtests Y Collect > Report
coverage results
Add expected Dut_put_s Set coverage criteria 4
and acceptance criteria
N
[y +
Analyze dependencies
Refine model
Add tests

Refine requirements

Incrementally Increase Test Coverage Using Test Case Generation

This example shows a functional testing-based testing workflow for a cruise control model. You start
with a model that has tests linked to an external requirements document, analyze the model for
coverage in Simulink Coverage, incrementally increase coverage with Simulink Design Verifier, and
report the results.

Explore the Test Harness and the Model
1 Create a copy of the project in a working folder. At the command line, enter:

path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’,...
'verification','src', 'cruise')
run(fullfile(path, 'slVerificationCruiseStart'))

2 Open the model and the test harness. At the command line, enter:

open_system simulinkCruiseAddRegExample
sltest.harness.open('simulinkCruiseAddReqExample', 'SafetyTest Harnessl')

3 Load the test suite from “Test Model Against Requirements and Report Results” on page 9-2 and
open the Simulink Test Manager. At the command line, enter:

9-9

9 Verification and Validation

sltest.testmanager.load('slReqTests.mldatx")
sltest.testmanager.view

4 Open the test sequence block. The sequence tests that the system disengages when the:
* Brake pedal is pressed

* Speed exceeds a limit

Some test sequence steps are linked to requirements document
simulinkCruiseChartReqs.docx.

Measure Model Coverage

1 In the Simulink Test Manager, click the slReqTests test file.
2 To enable coverage collection for the test file, in the right page under Coverage Settings:

* Select Record coverage for referenced models

+ Use Coverage filter filename to specify a coverage filter to use for the coverage analysis.
The default setting honors the model configuration parameter settings. Leaving the field
empty attaches no coverage filter.

* Select Decision, Condition, and MCDC.

3 To run the tests, on the Test Manager toolstrip, click Run.

4 When the test finishes select the Results in the Test Manager. The aggregated coverage results
show that the example model achieves 50% decision coverage, 41% condition coverage, and 25%
MCDC coverage.

* AGGREGATED COVERAGE RESULTS

ANALYZED MODEL REFORT CO.. DECISION CONDITION MCDC +

[*a] simulinkCruiseaddRegExample A A S0% e— 1% - 25% wm

*
Add Tests for Missing Coverage Export

Generate Tests to Increase Model Coverage

1 Use Simulink Design Verifier to generate additional tests to increase model coverage. In Results
and Artifacts, select the sTReqTests test file and open the Aggregated Coverage Results
section located in the right pane.

2 Right-click the test results and select Add Tests for Missing Coverage.

3 Under Harness, choose Create a new harness.

4 Click OK to add tests to the test suite using Simulink Design Verifier. The model being tested
must either be on the MATLAB path or in the working folder.

5 On the Test Manager toolstrip, click Run to execute the updated test suite. The test results
include coverage for the combined test case inputs, achieving increased model coverage.

9-10

Perform Functional Testing and Analyze Test Coverage

See Also

Related Examples

. “Link to Requirements” on page 1-2

. “Assess Model Simulation Using verify Statements” on page 3-15

. “Compare Model Output To Baseline Data” on page 6-7

. “Generate Test Cases for Model Decision Coverage” (Simulink Design Verifier)
. “Increase Test Coverage for a Model” on page 6-104

9-11

9 Verification and Validation

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview

Analyze code to detect errors, check standards compliance, and evaluate key metrics such as length
and cyclomatic complexity. Typically for handwritten code, you check for run-time errors with static
code analysis and run test cases that evaluate the code against requirements and evaluate code
coverage. Based on the results, refine the code and add tests. For generated code, demonstrate that
code execution produces equivalent results to the model by using the same test cases and baseline
results. Compare the code coverage to the model coverage. Based on test results, add tests and
modify the model to regenerate code.

Detailed model /
R - Add tests /
-------- Traceability-——-——-- -

Reguirements ty Refine model

T

— :

Traceability '

N 1

1

Code analysis
#| Error detection
Code metrics

Develop or
generate code

.| Verify results / Analyze = Report
equivalence coverage " results

Run tests

Y

[y

h 4

Refine code |«

Analyze Code for Defects, Metrics, and MISRA C:2012

This workflow describes how to check if your model produces MISRA® C:2012 compliant code and
how to check your generated code for code metrics, code defects, and MISRA compliance. To produce
more MISRA compliant code from your model, you use the code generation and Model Advisor. To
check whether the code is MISRA compliant, you use the Polyspace MISRA C:2012 checker and
report generation capabilities. For this example, you use the model
simulinkCruiseErrorAndStandardsExample. To open the model:

1 Open the project.
path = fullfile(matlabroot, 'toolbox', 'shared', 'examples’', ...
'verification','src', 'cruise')
run(fullfile(path, 'slVerificationCruiseStart'))

2 From the project, open the model simulinkCruiseErrorAndStandardsExample.

9-12

Analyze Code and Test Software-in-the-Loop

4)

1) TR P CruiseOnOff
CruiseOnOff
engaged
(2 } P Brake Be0 —E engaged @
—£ Brake engaged
Brake
@ —F Speed
Speed
@ -E CoastSets
W
CoastSetSw
tspeed
D
—£ AccelResSw

AccelResSw

Compute target speed

Run Code Generator Checks

Before you generate code from your model, there are steps that you can take to generate code more
compliant with MISRA C and more compatible with Polyspace. This example shows how to use the
Code Generation Advisor to check your model before generating code.

1 Right-click Compute target speed and select C/C++ Code > Code Generation Advisor.

2 Select the Code Generation Advisor folder. In the right pane, move Polyspace to Selected
objectives - prioritized . The MISRA C:2012 guidelines objective is already selected.

Code Generation Objectives (System target file: ert.tic)

Available objectives Selected objectives - prioritized

Execution efficiency MISRA C:2012 guidelines
ROM efficiency Paolyspace

RAM efficiency
Traceability

Safety precaution 1
Debugging

3 Click Run Selected Checks.

9-13

9 Verification and Validation

9-14

5

The Code Generation Advisor checks whether there are any blocks or configuration settings that
are not recommended for MISRA C:2012 compliance and Polyspace code analysis. For this
model, the check for incompatible blocks passes, but there are some configuration settings that
are incompatible with MISRA compliance and Polyspace checking.

ICa Code Generation Advisor
& Check model configuration settings against code generation objectives
0 Check for blocks not recommended for MISRA C:2012
Click on check that did not pass. Accept the parameter changes by selecting Modify
Parameters.
Rerun the check by selecting Run This Check.

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code that is
more compliant with MISRA C and more compatible with Polyspace. This example shows you how to
use the Model Advisor to check your model before generating code.

D W N R

At the bottom of the Code Generation Advisor window, select Model Advisor.
Under the By Task folder, select the Modeling Standards for MISRA C:2012 advisor checks.
Click Run Selected Checks and review the results.

If any of the tasks fail, make the suggested modifications and rerun the checks until the MISRA
modeling guidelines pass.

Generate and Analyze Code

After you have done the model compliance checking, you can generate the code. With Polyspace, you
can check your code for compliance with MISRA C:2012 and generate reports to demonstrate
compliance with MISRA C:2012.

1

In the Simulink editor, right-click Compute target speed and select C/C++ Code > Build This
Subsystem.

Use the default settings for the tunable parameters and select Build.
After the code is generated, right-click Compute target speed and select Polyspace > Options.

Click the Configure (Polyspace Bug Finder) button. This option allows you to choose more
advanced Polyspace analysis options in the Polyspace configuration window.

Analyze Code and Test Software-in-the-Loop

W Polyspace — O
I File Edit Tools Window Help
I
CIEY]
| | simulinkCruis...Example_config > 4 B
| £ Target & Compiler Coding Standards & Code Metrics
| - Macros
| “ Environment Settings
- Inputs & Stubbing
| - Multitasking [[] 5et checkers by file i
8 Coding Standards & Code Metrics Coding Standards
--Bug Finder Analysis
- Code Prover Verification [] check MISRA C:2004 required-rules View
- Verification Assumptions [] Check MISRA AC AGC OBL-rules View
- Check Behavior ;
Precision Chedk MISRA C:2012 mandatory-required w || View
- Sealing [] Use generated code requirements
--Reporting
Effective boolean types T
--Run Settings tp Type Ell}' = ¥ ﬁ'
- Advanced Settings boolean_T
[] Check SEI CERT-C all View
D Ched: ISO/IEC TS 17961 |all View
[] check custom rules Edit
Code Metrics
Calculate Code Metrics

5 On the same pane, select Calculate Code Metrics. This option turns on code metric calculations
for your generated code.

Save and close the Polyspace configuration window.

From your model, right-click Compute target speed and select Polyspace > Verify > Code
Generated For Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and defect
checks. You can see the progress of the analysis in the MATLAB Command Window. Once the
analysis is finished, the Polyspace environment opens.

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment shows you the
results of the static code analysis.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or object is local. As
you click through the 8.7 violations, you can see that these results refer to variables that other
components also use, such as CruiseOn0ff. You can annotate your code or your model to justify

9-15

9 Verification and Validation

every result. But, because this model is a unit in a larger program, you can also change the
configuration of the analysis to check only a subset of MISRA rules.

¥ Polyspace Bug Finder - Compute \\home-00-ah\mhaines\Documents\MATLAB\projects\slexamples\cruise3\results_ Compute\Compute - O X

File Reporting Metrics Tools Window Help

é}ﬂ]l[}Run -Stup‘k&
ﬂhﬁ‘ﬂ_
All results v TeNew [Elv < 5> @ showing 118/118 v J Compute.c X | 4 b B
- - - - - FOSIlneE LONpUTE 1IN HACCEL laioce 1yiyy ~
Family = Information « File “ Class = Function o Severity fdefine Compute IN CRUISE { (uintd T)10)
E-MISRA C:2012 49 . #define Compute IN Coast { (uinte_T)20)
2 Unused code 32 #define Compute IN NO ACTIVE CHILD ((uint2 T)oOU)
4 Code design 3 #defi C te TN OFF N ({ui ':;T) 20)
#define Compute uintg
58 Declarations and definitions 14 . . pube_— " R
= 87 Functions and objects should not be defined with external linkage if they are referenced in only one translation unit. 14 fdaflne Compure IN ON ((uintd _T) 10}
- T Category: Advisory Compute.c Global Scope File Scope #define Compute IN_STANDEY ({uintd_T)20)
L% * Category: Advisory Compute.c Global Scope File Scope #define Compute IN Steady ((uincd T)30)
v ® Category: Advisory Compute.c Global Scope File Scope
!...v * Category: Advisory Compute.c Global Scope File Scope /% Block states (auto storage) */
Category: Advisory Cumpute c Global Scope File Scope DW Compute T EQK_F-JEE DW:
Cateoorv Advisory Global Scope Fle Scope || - B B
=
: R : Category: Advisory Compute C Global Scope File Scope /% Real-time model */
L Category: Advisory Compute.c Global Scope File Scope v 7
H RT MCDEL Compute T Compute M ;
< > - - - T
E RT_MODEL_Compute_T *const Compute M = &Compute M ;
7§ Project Browser Results List
[% Result Details Fax § /% Exported data definition */
Variable trace Compute.c

/* Definition for custom storage class: Global */
= Result Review =
boolean T AccelResSw;

Severity Enter comment here... boolean T Brake;
Status ~ boolean T ?:oastEetSw:
buulean_g CruliseOnOff;
¥ MISRA C:2012 8.7 (Acvisory) (2 uincg_T Speed:
Functions and objects should not be defined with external linkage if they are referenced in only one translation unit. boolean T engaged:
Variable "Compute_M' should have internal linkage. wints szspeed;
/* Definition for custom storage class: Global */
uint8_T zuldrate = 5U;
uincg T ?‘mcdec = 1U;
uintg T ;axtspeed = 90U; v
P s
¥ Configuration |] Result Detaiks | 2] Dashboard |] Source | [Z] output Summary|

afied ye3s A | 4

2 In your model, right-click Compute target speed and select Polyspace > Options.

3 Set the Settings from (Polyspace Bug Finder) option to Project configuration. This option
allows you to choose a subset of MISRA rules in the Polyspace configuration.

Click the Configure button.

5 In the Polyspace Configuration window, on the Coding Standards & Code Metrics pane, select
the check box Check MISRA C:2012 and from the drop-down list, select single-unit-rules.
Now, Polyspace checks only the MISRA C:2012 rules that are applicable to a single unit.

Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.
The rules Polyspace showed previously were found because the model was analyzed by itself.

When you limited the rules Polyspace checked to the single-unit subset, only two violations were
found.

9-16

Analyze Code and Test Software-in-the-Loop

Display: | Top 10 « defects and violations by |File v | lﬁ Mew

Computed version 1.0 (24/06/2019) - Author: thedore o3
Analysis information: Configuration
Review Scope: All results - View all results in this scope

Code covered by analysis

Files 100% (2/2)

Functions 100% (4/4)

Mo defects found

MISRA (:2012 violations by file
Total: 2 violation(s) found

When this model is integrated with its parent model, you can add the rest of the MISRA C:2012 rules.
Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code metrics, you must
export your results. This section shows you how to generate a report after the analysis. If you want to
generate a report every time you run an analysis, see Generate report.

1 [f they are not open already, open your results in the Polyspace environment.

2 From the toolbar, select Reporting > Run Report.

3 Select BugFinderSummary as your report type.

4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

See Also

Related Examples

. “Run Polyspace Analysis on Code Generated with Embedded Coder” (Polyspace Bug Finder)
. “Test Two Simulations for Equivalence”
. “Export Test Results and Generate Test Results Reports” on page 7-7

9-17

	Test Strategies
	Link to Requirements
	Requirements Traceability Considerations
	Establish Requirements Traceability for Testing

	Requirements-Based Testing for Model Development

	Test Harness
	Test Harness and Model Relationship
	Harness-Model Relationship for a Model Component
	Harness-Model Relationship for a Top-Level Model
	Resolving Parameters
	Test Harness Considerations

	Test Harness Construction for Specific Model Elements
	Signal Conversion
	Function Calls
	Physical Signal Connections
	Bus Signals
	String Signals
	Non-Graphical Connections
	Export Function Models
	Execution Semantics
	Sample Time Specification

	Create Test Harnesses and Select Properties
	Create a Test Harness For a Top Level Model
	Create a Test Harness for a Model Component
	Preview and Open Test Harnesses
	Change Test Harness Properties
	Considerations for Selecting Test Harness Properties
	Harness Name
	Save Test Harnesses Externally
	Sources and Sinks
	Create scalar inputs
	Add scheduler for function-calls and rates / Generate function-call signals using
	Enable Initialize, Reset, and Terminate ports
	Add Separate Assessment Block
	Open Harness After Creation
	Create without compiling the model
	Verification Modes
	Use generated code to create SIL/PIL block
	Build folder
	Post-create callback method
	Rebuild harness on open
	Update Configuration Parameters and Model Workspace data on rebuild
	Post-rebuild callback method
	Synchronization Mode

	Refine, Test, and Debug a Subsystem
	Model and Requirements
	Create a Harness for the Controller
	Inspect and Refine the Controller
	Add Test Inputs and Test the Controller
	Debug the Controller

	Manage Test Harnesses
	Internal and External Test Harnesses
	Manage External Test Harnesses
	Convert Between Internal and External Test Harnesses
	Preview and Open Test Harnesses
	Find Test Cases Associated with a Test Harness
	Export Test Harnesses to Separate Models
	Clone and Export a Test Harness to a Separate Model
	Delete Test Harnesses Programmatically
	Move and Clone Test Harnesses

	Customize Test Harnesses
	Callback Function Definition and Harness Information
	How to Display Harness Information struct Contents
	Customize a Test Harness to Create Mixed Source Types
	Test Harness Callback Example

	Create Test Harnesses from Standalone Models
	Test Harness Import Workflow
	Component Compatibility for Test Harness Import
	Import a Standalone Model as a Test Harness

	Synchronize Changes Between Test Harness and Model
	Set Synchronization for a New Test Harness
	Change Synchronization of an Existing Test Harness
	Synchronize Configuration Set and Model Workspace Data
	Check for Unsynchronized Component Differences
	Rebuild a Test Harness
	Push Changes from Test Harness to Model
	Check Component and Push Parameter to Main Model

	Test Library Blocks
	Library Testing Workflow
	Library and Linked Subsystem Test Harnesses
	Edit Library Block from a Test Harness
	Testing a Library and a Linked Block

	Test Sequences and Assessments
	Test Sequence Basics
	Test Sequence Hierarchy
	Transition Types
	Create a Basic Test Sequence
	Create Basic Test Assessments

	Use Stateflow Chart for Test Harness Inputs and Scheduling
	Use a Stateflow Chart for Test Harness Scheduling
	Use a Stateflow Chart as a Test Harness Source
	

	Assess Simulation and Compare Output Data
	Overview
	Compare Simulation Data to Baseline Data or Another Simulation
	Post-Process Results With a Custom Script
	Run-Time Assessments
	Logical and Temporal Assessments

	Assess Model Simulation Using verify Statements
	Activate verify Statements in the Test Assessment Block
	Author verify Statements

	Verify Multiple Conditions at a Time
	Assess a Model by Using When Decomposition
	Test Sequence Editor
	Define Test Sequences
	Manage Test Steps
	Manage Input, Output, and Data Objects
	Find and Replace
	Automatic Syntax Correction

	Actions and Transitions
	Transition Between Steps Using Temporal or Signal Conditions
	Temporal Operators
	Transition Operators
	Use Messages in Test Sequences

	Signal Generation Functions
	Sinusoidal and Random Number Functions in Test Sequences
	Using an External Function from a Test Sequence Block
	Signal Generation Functions

	Programmatically Create a Test Sequence
	Test Sequence and Assessment Syntax
	Assessment Statements
	Temporal Operators
	Transition Operators
	Signal Generation Functions
	Logical Operators
	Relational Operators

	Debug a Test Sequence
	View Test Step Execution During Simulation
	Set Breakpoints to Enable Debugging
	View Data Values During Simulation
	Step Through Simulation

	Test Downshift Points of a Transmission Controller
	Examine Model Verification Results by Using Simulation Data Inspector
	Assess Temporal Logic by Using Temporal Assessments
	Create a Temporal Assessment
	Define Temporal Assessment Conditions
	Evaluate the SUT
	Link Temporal Assessments to Requirements

	Logical and Temporal Assessment Syntax
	Bounds Check Assessments
	Trigger-Response Assessments
	Custom Assessments
	Logical and Temporal Assessment Conditions

	Observers
	Access Model Data Wirelessly by Using Observers
	Observer Reference Block
	Connect Signals or Other Model Data Using an Observer Port Block
	Trace Observed Items to Model Signals and Objects
	Simulate a System Model with an Observer Reference Block
	Verify Heat Pump Temperature by Using Observers
	Convert Verification Subsystem to an Observer Reference

	Test Harness Software- and Processor-in-the-Loop
	SIL Verification for a Subsystem
	Create a SIL Verification Harness for a Controller
	Configure and Simulate a SIL Verification Harness
	Compare the SIL Block and Model Controller Outputs

	Use SIL/PIL to Verify Generated Code from an Earlier Release
	Reuse Generated Code
	SIL Verification of a Subsystem using Code Generated from an Earlier Release

	Import Test Cases for Equivalence Testing
	Settings for Test Case Simulations
	Top-Level Model
	Model Block in SIL/PIL Mode
	Model Block in a Test Harness
	Back-to-Back Testing a Model Using the SIL/PIL Manager App

	Test Integrated Code
	Test Integrated C Code
	Test Code in S-Functions
	S-Function Testing Example

	Test Manager Test Cases
	Manage Test File Dependencies
	Package a Test File Using Projects
	Find Test File Dependencies and Impact
	Share a Test File with Dependencies

	Compare Model Output To Baseline Data
	Create the Test Case
	Run the Test Case and View Results

	Creating Baseline Tests
	Test a Simulation for Run-Time Errors
	Configure the Model
	Create the Test Case
	Run the Test Case
	View Test Results

	Automatically Create a Set of Test Cases
	Creating Test Cases from Model Elements
	Generating Test Cases from a Model

	Generate Tests for a Component
	Open the Create Test for Component Wizard
	Specify Component to Test
	Specify Test Inputs
	Specify Test Method
	Specify How to Save Test Data
	Generate the Test Harness and Test Case

	Create and Run a Back-to-Back Test
	Run the Back-to-Back Test
	View the Back-to-Back Test Results

	Testing AUTOSAR Compositions
	Testing a Lane-Following Controller with Simulink Test
	Synchronize Tests
	Run Tests Using External Data
	Mapping Status
	Create a Test Case from an Excel Spreadsheet
	Import an Excel Spreadsheet into a Test Case
	Add Microsoft Excel File as Input
	Add Test Data from Microsoft Excel
	Add a MAT-File as an External Input

	Importing Test Data from Microsoft® Excel®
	Test Case Input Data Files
	Generate an Excel Template
	Format Test Case Data in Excel
	Create a MAT-File for Input Data

	Capture Simulation Data in a Test Case
	Add Logged Signals in the Test Manager
	Capture Data from Local and Global Data Stores

	Run Tests in Multiple Releases
	Considerations for Testing in Multiple Releases
	Add Releases Using Test Manager Preferences
	Run Baseline Tests in Multiple Releases
	Run Equivalence Tests in Multiple Releases
	Run Simulation Tests in Multiple Releases

	Examine Test Failures and Modify Baselines
	Examine Test Failure Signals and Update Baseline Test
	Manually Update Signal Data in a Baseline

	Create and Run Test Cases with Scripts
	Create and Run a Baseline Test Case
	Create and Run an Equivalence Test Case
	Run a Test Case and Collect Coverage
	Create and Run Test Case Iterations

	Test Iterations
	Create Table Iterations
	Create Scripted Iterations
	Capture Baseline Data from Iterations
	Sweep Through a Set of Parameters

	Collect Coverage in Tests
	Set Up Coverage Collection Using the Test Manager
	View and Filter Coverage Results in the Test Manager
	Coverage Filtering Using the Test Manager

	Test Coverage for Requirements-Based Testing
	Increase Test Coverage for a Model
	Run Tests Using Parallel Execution
	When Do Tests Benefit from Using Parallel Execution?
	Use Parallel Execution

	Set Signal Tolerances
	Modify Criteria Tolerances
	Change Leading Tolerance in a Baseline Comparison Test

	Test Sections
	Select Releases for Testing
	Set Preferences to Display Test Sections
	Select releases for simulation
	Tags
	Description
	Requirements
	System Under Test
	Parameter Overrides
	Callbacks
	Inputs
	Simulation Outputs
	Configuration Setting Overrides
	Simulation 1 and Simulation 2
	Equivalence Criteria
	Baseline Criteria
	Iterations
	Logical and Temporal Assessments
	Custom Criteria
	Coverage Settings
	Test File Options

	Increase Coverage by Generating Test Inputs
	Overall Workflow
	Test Case Generation Example

	Process Test Results with Custom Scripts
	MATLAB Testing Framework
	Define a Custom Criteria Script
	Reuse Custom Criteria and Debug Using Breakpoints
	Assess the Damping Ratio of a Flutter Suppression System
	Custom Criteria Programmatic Interface Example

	Create, Store, and Open MATLAB Figures
	Create a Custom Figure for a Test Case
	Include Figures in a Report

	Test Models Using MATLAB Unit Test
	Overall Workflow
	Considerations
	Comparison of Test Nomenclature
	Basic Workflow Using MATLAB® Unit Test

	Output Results for Continuous Integration Systems
	Test a Model for Continuous Integration Systems
	Model Coverage Results for Continuous Integration

	Filter and Reorder Test Execution and Results
	Add Tags
	Filter Tests and Results
	Run Filtered Tests

	Test Manager Results and Reports
	View Test Case Results
	View Results Summary
	Visualize Test Case Simulation Output and Criteria

	Export Test Results and Generate Test Results Reports
	Export Results
	Create a Test Results Report
	Save Reporting Options with a Test File
	Generate Reports Using Templates
	Generating a Test Results Report

	Customize Test Results Reports
	Inherit the Report Class
	Method Hierarchy
	Modify the Class
	Generate a Report Using the Custom Class

	Append Code to a Test Report
	Results Sections
	Summary
	Test Requirements
	Iteration Settings
	Errors
	Logs
	Description
	Parameter Overrides
	Coverage Results
	Aggregated Coverage Results
	Scope coverage results to linked requirements
	Add Tests for Missing Coverage
	Applied Coverage Filters

	Generate Test Specification Reports
	Customize Test Specification Reports
	Remove Content or Change Report Formatting and Section Ordering
	Add Content to a Test Specification Report

	Real-Time Testing
	Test Models in Real Time
	Overall Workflow
	Real-Time Testing Considerations
	Complete Basic Model Testing
	Set up the Target Computer
	Configure the Model or Test Harness
	Add Test Cases for Real-Time Testing
	Assess Real-Time Execution Using verify Statements

	Reuse Desktop Test Cases for Real-Time Testing
	Convert Desktop Test Cases to Real-Time
	Use External Data for Real-Time Tests
	Example

	Verification and Validation
	Test Model Against Requirements and Report Results
	Requirements – Test Traceability Overview
	Display the Requirements
	Link Requirements to Tests
	Run the Test
	Report the Results

	Analyze a Model for Standards Compliance and Design Errors
	Standards and Analysis Overview
	Check Model for Style Guideline Violations and Design Errors

	Perform Functional Testing and Analyze Test Coverage
	Incrementally Increase Test Coverage Using Test Case Generation

	Analyze Code and Test Software-in-the-Loop
	Code Analysis and Testing Software-in-the-Loop Overview
	Analyze Code for Defects, Metrics, and MISRA C:2012

